We prove a new inequality for the Hodge number h1,1 of irregular complex smooth projective surfaces of general type without irrational pencils of genus ≥2. More specifically we show that if the irregularity q satisfies q=2k+1 then h1,1≥4q-3. This generalizes results previously known for q=3 and q=5
The Hodge number h1,1 of irregular algebraic surfaces
PIROLA, GIAN PIETRO
2016-01-01
Abstract
We prove a new inequality for the Hodge number h1,1 of irregular complex smooth projective surfaces of general type without irrational pencils of genus ≥2. More specifically we show that if the irregularity q satisfies q=2k+1 then h1,1≥4q-3. This generalizes results previously known for q=3 and q=5File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.