We prove a new inequality for the Hodge number h1,1 of irregular complex smooth projective surfaces of general type without irrational pencils of genus ≥2. More specifically we show that if the irregularity q satisfies q=2k+1 then h1,1≥4q-3. This generalizes results previously known for q=3 and q=5

The Hodge number h1,1 of irregular algebraic surfaces

PIROLA, GIAN PIETRO
2016-01-01

Abstract

We prove a new inequality for the Hodge number h1,1 of irregular complex smooth projective surfaces of general type without irrational pencils of genus ≥2. More specifically we show that if the irregularity q satisfies q=2k+1 then h1,1≥4q-3. This generalizes results previously known for q=3 and q=5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1112884
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact