Quantum optics plays a central role in the study of fundamental concepts in quantum mechanics, and in the development of new technological applications. Typical experiments employ sources of photon pairs generated by parametric processes such as spontaneous parametric down-conversion and spontaneous four-wave-mixing. The standard characterization of these sources relies on detecting the pairs themselves and thus requires single photon detectors, which limit both measurement speed and accuracy. Here it is shown that the two-photon quantum state that would be generated by parametric fluorescence can be characterised with unprecedented spectral resolution by performing a classical experiment. This streamlined technique gives access to hitherto unexplored features of two-photon states and has the potential to speed up design and testing of massively parallel integrated nonlinear sources by providing a fast and reliable quality control procedure. Additionally, it allows for the engineering of quantum light states at a significantly higher level of spectral detail, powering future quantum optical applications based on time-energy photon correlations.

High-resolution spectral characterization of two photon states via classical measurements

LISCIDINI, MARCO;
2014-01-01

Abstract

Quantum optics plays a central role in the study of fundamental concepts in quantum mechanics, and in the development of new technological applications. Typical experiments employ sources of photon pairs generated by parametric processes such as spontaneous parametric down-conversion and spontaneous four-wave-mixing. The standard characterization of these sources relies on detecting the pairs themselves and thus requires single photon detectors, which limit both measurement speed and accuracy. Here it is shown that the two-photon quantum state that would be generated by parametric fluorescence can be characterised with unprecedented spectral resolution by performing a classical experiment. This streamlined technique gives access to hitherto unexplored features of two-photon states and has the potential to speed up design and testing of massively parallel integrated nonlinear sources by providing a fast and reliable quality control procedure. Additionally, it allows for the engineering of quantum light states at a significantly higher level of spectral detail, powering future quantum optical applications based on time-energy photon correlations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1113038
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 74
social impact