The surface properties of a biomaterial are fundamental to determine the response of the host tissue. In the present study, we have followed a particular biomimetic strategy where electromagnetically stimulated SAOS-2 human osteoblasts proliferated and built a calcified extracellular matrix on a titanium fiber-mesh surface. In comparison with control conditions, the electromagnetic stimulation (magnetic field intensity, 2 mT; frequency, 75 Hz) caused higher cell proliferation and increased surface coating with type-I collagen, decorin, and osteopontin (9.8-fold, 11.3-fold, and 9.5-fold, respectively). Reverse transcriptase-polymerase analysis revealed the electromagnetically upregulated transcription specific for the foregoing matrix proteins and for the growth factor TGF-b1. The immunofluorescence of type-I collagen, decorin, and osteopontin showed their colocalization in the cell-rich areas. The use of an electromagnetic bioreactor aimed at obtaining the surface modification of the biocompatible metallic scaffold in terms of cell colonization and coating with calcified extracellular matrix. The superficially modified biomaterial could be used, in clinical applications, as an implant for bone repair.

Electromagnetic enhancement of a culture of human SAOS-2 osteoblasts seeded onto titanium fiber-mesh scaffolds

Fassina L;Saino E;Visai L;Silvani G;Cusella De Angelis MG;Benazzo F;Magenes G.
2008

Abstract

The surface properties of a biomaterial are fundamental to determine the response of the host tissue. In the present study, we have followed a particular biomimetic strategy where electromagnetically stimulated SAOS-2 human osteoblasts proliferated and built a calcified extracellular matrix on a titanium fiber-mesh surface. In comparison with control conditions, the electromagnetic stimulation (magnetic field intensity, 2 mT; frequency, 75 Hz) caused higher cell proliferation and increased surface coating with type-I collagen, decorin, and osteopontin (9.8-fold, 11.3-fold, and 9.5-fold, respectively). Reverse transcriptase-polymerase analysis revealed the electromagnetically upregulated transcription specific for the foregoing matrix proteins and for the growth factor TGF-b1. The immunofluorescence of type-I collagen, decorin, and osteopontin showed their colocalization in the cell-rich areas. The use of an electromagnetic bioreactor aimed at obtaining the surface modification of the biocompatible metallic scaffold in terms of cell colonization and coating with calcified extracellular matrix. The superficially modified biomaterial could be used, in clinical applications, as an implant for bone repair.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11571/111415
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 33
social impact