We introduce a confinement mechanism in photonic crystal slab cavities, which relies on the superposition of two incommensurate one-dimensional lattices in a line-defect waveguide. It is shown that the resulting photonic profile realizes an effective quasi-periodic bichromatic potential for the electromagnetic field confinement yielding extremely high quality (Q) factor nanocavities, while simultaneously keeping the mode volume close to the diffraction limit. We apply these concepts to pillar- and hole-based photonic crystal slab cavities, respectively, and a Q-factor improvement by over an order of magnitude is shown over existing designs, especially in pillar-based structures. Thanks to the generality and easy adaptation of such confinement mechanism to a broad class of cavity designs and photonic lattices, this work opens interesting routes for applications where enhanced light–matter interaction in photonic crystal structures is required.

Effective bichromatic potential for ultra-high Q-factor photonic crystal slab cavities

ALPEGGIANI, FILIPPO;ANDREANI, LUCIO;GERACE, DARIO
2015-01-01

Abstract

We introduce a confinement mechanism in photonic crystal slab cavities, which relies on the superposition of two incommensurate one-dimensional lattices in a line-defect waveguide. It is shown that the resulting photonic profile realizes an effective quasi-periodic bichromatic potential for the electromagnetic field confinement yielding extremely high quality (Q) factor nanocavities, while simultaneously keeping the mode volume close to the diffraction limit. We apply these concepts to pillar- and hole-based photonic crystal slab cavities, respectively, and a Q-factor improvement by over an order of magnitude is shown over existing designs, especially in pillar-based structures. Thanks to the generality and easy adaptation of such confinement mechanism to a broad class of cavity designs and photonic lattices, this work opens interesting routes for applications where enhanced light–matter interaction in photonic crystal structures is required.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1117203
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 35
social impact