The bone regeneration is one of the most important challenges for regenerative medicine. In maxillo-facial area, bone resorption of the alveolar crest occurs after tooth extraction and leads to several risks for rehabilitation treatments, including dental implants procedures. Goal of our study was to demonstrate the efficacy of an innovative clinical protocol of bone tissue engineering called Rigenera protocol, aimed to create and optimize bio-complexes constituted by collagen biomaterial and human autologous periosteum-derived micro-grafts. We assessed the capacity of these bio-complexes to prevent the bone resorption in the alveolar crest with respect to simple collagen performing histological evaluations of neo-formed osseous tissue. We demonstrated that autologous bio-complexes significantly reduced the bone resorption of both horizontal and vertical dimension of alveolar crest when compared to collagen alone. We also showed that these bio-complexes accelerate the ossification process triggering the formation of new osseous tissue after 45 days from treatment and increasing the calcified matrix after 60 days and until to 120 days with respect to collagen alone. Taken together, these data showed the efficacy of bio-complexes composed by periosteum-derived micro-grafts and collagen in the alveolar ridge preservation through a reduction of bone resorption and an enhancement of new osseous tissue formation.
Periosteum-derived micro-grafts for tissue regeneration of human maxillary bone
GRAZIANO, ANTONIO;CECCARELLI, GABRIELE;CUSELLA DE ANGELIS, MARIA GABRIELLA;LUPI, SATURNINO MARCO;RIZZO, SILVANA;RODRIGUEZ Y BAENA, RUGGERO
2016-01-01
Abstract
The bone regeneration is one of the most important challenges for regenerative medicine. In maxillo-facial area, bone resorption of the alveolar crest occurs after tooth extraction and leads to several risks for rehabilitation treatments, including dental implants procedures. Goal of our study was to demonstrate the efficacy of an innovative clinical protocol of bone tissue engineering called Rigenera protocol, aimed to create and optimize bio-complexes constituted by collagen biomaterial and human autologous periosteum-derived micro-grafts. We assessed the capacity of these bio-complexes to prevent the bone resorption in the alveolar crest with respect to simple collagen performing histological evaluations of neo-formed osseous tissue. We demonstrated that autologous bio-complexes significantly reduced the bone resorption of both horizontal and vertical dimension of alveolar crest when compared to collagen alone. We also showed that these bio-complexes accelerate the ossification process triggering the formation of new osseous tissue after 45 days from treatment and increasing the calcified matrix after 60 days and until to 120 days with respect to collagen alone. Taken together, these data showed the efficacy of bio-complexes composed by periosteum-derived micro-grafts and collagen in the alveolar ridge preservation through a reduction of bone resorption and an enhancement of new osseous tissue formation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.