The Iranian sector of the Persian Gulf is affected by more than 30 large diapiric structures triggered by the mobilization of the Infracambrian Hormuz Complex, an evaporite-rich unit that overlies Precambrian basement at the base of the sedimentary succession. Nineteen non-piercing diapirs, without any appreciable salt intrusion into the upper succession, were studied in detail and retro-deformed by the decompaction and unfolding of 13 seismic horizons that were identified by the interpretation of a dense grid of 2D seismic lines and calibrated by well data. Salt uplift had begun by the Early Palaeozoic and persists to the present day,with major pulses of intensity during the Middle Triassic, Cenomanian, Late Oligocene, and post-Middle Miocene. The structural reconstructions and the analysis of the progressive deformation of the study diapirs do not show any link between diapiric uplift and local tectonic structures, and no clear correlation with the regional geodynamic events acting at the boundary of the Arabian plate. On the contrary, the salt uplift seems strongly influenced by the differential rate of sedimentation that affected the whole study basin (more than 40,000 km2), with a coefficient of correlation between the salt uplift rate and the differential rate of sedimentation (expressed by the standard deviation of the sedimentation rate calculated over the entire basin) of 0.95. This downbuilding mechanism of diapiric growth is apparently induced by differential sedimentation over long distances (several tens of kilometers), showing that the flow of salt affected the whole basin and not just the areas around the single diapiric structures.

Evolution and timing of salt diapirism in the Iranian sector of the Persian Gulf

PEROTTI, CESARE;BRESCIANI, ILENIA;TOSCANI, GIOVANNI
2016-01-01

Abstract

The Iranian sector of the Persian Gulf is affected by more than 30 large diapiric structures triggered by the mobilization of the Infracambrian Hormuz Complex, an evaporite-rich unit that overlies Precambrian basement at the base of the sedimentary succession. Nineteen non-piercing diapirs, without any appreciable salt intrusion into the upper succession, were studied in detail and retro-deformed by the decompaction and unfolding of 13 seismic horizons that were identified by the interpretation of a dense grid of 2D seismic lines and calibrated by well data. Salt uplift had begun by the Early Palaeozoic and persists to the present day,with major pulses of intensity during the Middle Triassic, Cenomanian, Late Oligocene, and post-Middle Miocene. The structural reconstructions and the analysis of the progressive deformation of the study diapirs do not show any link between diapiric uplift and local tectonic structures, and no clear correlation with the regional geodynamic events acting at the boundary of the Arabian plate. On the contrary, the salt uplift seems strongly influenced by the differential rate of sedimentation that affected the whole study basin (more than 40,000 km2), with a coefficient of correlation between the salt uplift rate and the differential rate of sedimentation (expressed by the standard deviation of the sedimentation rate calculated over the entire basin) of 0.95. This downbuilding mechanism of diapiric growth is apparently induced by differential sedimentation over long distances (several tens of kilometers), showing that the flow of salt affected the whole basin and not just the areas around the single diapiric structures.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1121842
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 35
social impact