Let $u$ be a non-negative super-solution to a $1$-dimensional singular parabolic equation of $p$-Laplacian type ($1<p<2$). If $u$ is bounded below on a time-segment $\y\\times(0,T]$ by a positive number $M$, then it has a power-like decay of order $\frac p2-p$ with respect to the space variable $x$ in $\mathbb R\times[T/2,T]$. This fact, stated quantitatively in Proposition 1.1, is a "sidewise spreading of positivity" of solutions to such singular equations, and can be considered as a form of Harnack inequality. The proof of such an effect is based on geometrical ideas.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | $1$-Dimensional Harnack Estimates |
Autori: | |
Data di pubblicazione: | 2016 |
Rivista: | |
Abstract: | Let $u$ be a non-negative super-solution to a $1$-dimensional singular parabolic equation of $p$-Laplacian type ($1<p<2$). If $u$ is bounded below on a time-segment $\y\\times(0,T]$ by a positive number $M$, then it has a power-like decay of order $\frac p2-p$ with respect to the space variable $x$ in $\mathbb R\times[T/2,T]$. This fact, stated quantitatively in Proposition 1.1, is a "sidewise spreading of positivity" of solutions to such singular equations, and can be considered as a form of Harnack inequality. The proof of such an effect is based on geometrical ideas. |
Handle: | http://hdl.handle.net/11571/1123782 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.