In the present contribution, a feedback control law is studied for a quasilinear parabolic equation. First, we prove the well-posedness and some regularity results for the Cauchy-Neumann problem for this equation, modified by adding an extra term which is a multiple of the subdifferential of the distance function from a closed convex set of the space of square-integrable functions. Then, we consider convex sets of obstacle or double-obstacle type and prove rigorously the following property: if the factor in front of the feedback control is sufficiently large, then the solution reaches the convex set within a finite time and then moves inside it.
Constrained Evolution for a Quasilinear Parabolic Equation
COLLI, PIERLUIGI;GILARDI, GIANNI MARIA;
2016-01-01
Abstract
In the present contribution, a feedback control law is studied for a quasilinear parabolic equation. First, we prove the well-posedness and some regularity results for the Cauchy-Neumann problem for this equation, modified by adding an extra term which is a multiple of the subdifferential of the distance function from a closed convex set of the space of square-integrable functions. Then, we consider convex sets of obstacle or double-obstacle type and prove rigorously the following property: if the factor in front of the feedback control is sufficiently large, then the solution reaches the convex set within a finite time and then moves inside it.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.