We formulate a full quantum mechanical theory of the interaction between electromagnetic modes in photonic crystal slabs and quantum well excitons embedded in the photonic structure. We apply the formalism to a high index dielectric layer with a periodic patterning suspended in air. The strong coupling between electromagnetic modes lying above the cladding light line and exciton center of mass eigenfunctions manifests itself with the typical anticrossing behavior. The resulting band dispersion corresponds to the quasi-particles coming from the mixing of electromagnetic and material excitations, which we call photonic crystal polaritons. We compare the results obtained by using the quantum theory to variable angle reflectance spectra coming from a scattering matrix approach, and we find very good quantitative agreement.

Quantum theory of photonic crystal polaritons

GERACE, DARIO;AGIO, MARIO;ANDREANI, LUCIO
2004

Abstract

We formulate a full quantum mechanical theory of the interaction between electromagnetic modes in photonic crystal slabs and quantum well excitons embedded in the photonic structure. We apply the formalism to a high index dielectric layer with a periodic patterning suspended in air. The strong coupling between electromagnetic modes lying above the cladding light line and exciton center of mass eigenfunctions manifests itself with the typical anticrossing behavior. The resulting band dispersion corresponds to the quasi-particles coming from the mixing of electromagnetic and material excitations, which we call photonic crystal polaritons. We compare the results obtained by using the quantum theory to variable angle reflectance spectra coming from a scattering matrix approach, and we find very good quantitative agreement.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11571/113701
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact