An important goal of modern organic chemistry is to develop new catalytic strategies for enantioselective carbon–carbon bond formation that can be used to generate quaternary stereogenic centres. Whereas considerable advances have been achieved by exploiting polar reactivity, radical transformations have been far less successful. This is despite the fact that open-shell intermediates are intrinsically primed for connecting structurally congested carbons, as their reactivity is only marginally affected by steric factors. Here we show how the combination of photoredox and asymmetric organic catalysis5 enables enantioselective radical conjugate additions to β,β-disubstituted cyclic enones to obtain quaternary carbon stereocentres with high fidelity. Critical to our success was the design of a chiral organic catalyst, containing a redox-active carbazole moiety, that drives the formation of iminium ions and the stereoselective trapping of photochemically generated carbon-centred radicals by means of an electron-relay mechanism. We demonstrate the generality of this organocatalytic radicaltrapping strategy with two sets of open-shell intermediates, formed through unrelated light-triggered pathways from readily available substrates and photoredox catalysts—this method represents the application of iminium ion activation6 (a successful catalytic strategy for enantioselective polar chemistry) within the realm of radical reactivity.

Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals

FAGNONI, MAURIZIO;
2016-01-01

Abstract

An important goal of modern organic chemistry is to develop new catalytic strategies for enantioselective carbon–carbon bond formation that can be used to generate quaternary stereogenic centres. Whereas considerable advances have been achieved by exploiting polar reactivity, radical transformations have been far less successful. This is despite the fact that open-shell intermediates are intrinsically primed for connecting structurally congested carbons, as their reactivity is only marginally affected by steric factors. Here we show how the combination of photoredox and asymmetric organic catalysis5 enables enantioselective radical conjugate additions to β,β-disubstituted cyclic enones to obtain quaternary carbon stereocentres with high fidelity. Critical to our success was the design of a chiral organic catalyst, containing a redox-active carbazole moiety, that drives the formation of iminium ions and the stereoselective trapping of photochemically generated carbon-centred radicals by means of an electron-relay mechanism. We demonstrate the generality of this organocatalytic radicaltrapping strategy with two sets of open-shell intermediates, formed through unrelated light-triggered pathways from readily available substrates and photoredox catalysts—this method represents the application of iminium ion activation6 (a successful catalytic strategy for enantioselective polar chemistry) within the realm of radical reactivity.
File in questo prodotto:
File Dimensione Formato  
1 Asymmetric catalytic formation of quaternary_16_DRAFT.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1138682
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 317
  • ???jsp.display-item.citation.isi??? 304
social impact