We study a compact invariant convex set E in a polar representation of a compact Lie group. Polar representations are given by the adjoint action of K on p, where K is a maximal compact subgroup of a real semisimple Lie group G with Lie algebra g = k ⊕ p. If a ⊂ p is a maximal abelian subalgebra, then P = E ∩ a is a convex set in a. We prove that up to conjugacy the face structure of E is completely determined by that of P and that a face of E is exposed if and only if the corresponding face of P is exposed. We apply these results to the convex hull of the image of a restricted momentum map.

Invariant convex sets in polar representations

GHIGI, ALESSANDRO CALLISTO;
2016-01-01

Abstract

We study a compact invariant convex set E in a polar representation of a compact Lie group. Polar representations are given by the adjoint action of K on p, where K is a maximal compact subgroup of a real semisimple Lie group G with Lie algebra g = k ⊕ p. If a ⊂ p is a maximal abelian subalgebra, then P = E ∩ a is a convex set in a. We prove that up to conjugacy the face structure of E is completely determined by that of P and that a face of E is exposed if and only if the corresponding face of P is exposed. We apply these results to the convex hull of the image of a restricted momentum map.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1156642
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact