We consider the Navier–Stokes equations in $R^d$ (d=2,3) with a stochastic forcing term which is white noise in time and coloured in space; the spatial covariance of the noise is not too regular, so Itô calculus cannot be applied in the space of finite energy vector fields. We prove existence of weak solutions for d=2,3 and pathwise uniqueness for d=2.

A note on stochastic Navier-Stokes equations with not regular multiplicative noise

FERRARIO, BENEDETTA
2017-01-01

Abstract

We consider the Navier–Stokes equations in $R^d$ (d=2,3) with a stochastic forcing term which is white noise in time and coloured in space; the spatial covariance of the noise is not too regular, so Itô calculus cannot be applied in the space of finite energy vector fields. We prove existence of weak solutions for d=2,3 and pathwise uniqueness for d=2.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1163571
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 19
social impact