A novel technique for measuring the mass of the top quark that uses only the kinematic properties of its charged decay products is presented. Top quark pair events with final states with one or two charged leptons and hadronic jets are selected from the data set of 8 TeV proton-proton collisions, corresponding to an integrated luminosity of 19.7 fb(-1). By reconstructing secondary vertices inside the selected jets and computing the invariant mass of the system formed by the secondary vertex and an isolated lepton, an observable is constructed that is sensitive to the top quark mass that is expected to be robust against the energy scale of hadronic jets. The main theoretical systematic uncertainties, concerning the modeling of the fragmentation and hadronization of b quarks and the reconstruction of secondary vertices from the decays of b hadrons, are studied. A top quark mass of 173.68 +/- 0.20(stat)(-0.97)(+1.58) (syst) GeV is measured. The overall systematic uncertainty is dominated by the uncertainty in the b quark fragmentation and the modeling of kinematic properties of the top quark.

Measurement of the top quark mass using charged particles in pp collisions at s =8 TeV

BRAGHIERI, ALESSANDRO;MAGNANI, ALICE;MONTAGNA, PAOLO MARIA;RATTI, SERGIO PEPPINO;RICCARDI, CRISTINA;SALVINI, PAOLA;VAI, ILARIA;VITULO, PAOLO
2016-01-01

Abstract

A novel technique for measuring the mass of the top quark that uses only the kinematic properties of its charged decay products is presented. Top quark pair events with final states with one or two charged leptons and hadronic jets are selected from the data set of 8 TeV proton-proton collisions, corresponding to an integrated luminosity of 19.7 fb(-1). By reconstructing secondary vertices inside the selected jets and computing the invariant mass of the system formed by the secondary vertex and an isolated lepton, an observable is constructed that is sensitive to the top quark mass that is expected to be robust against the energy scale of hadronic jets. The main theoretical systematic uncertainties, concerning the modeling of the fragmentation and hadronization of b quarks and the reconstruction of secondary vertices from the decays of b hadrons, are studied. A top quark mass of 173.68 +/- 0.20(stat)(-0.97)(+1.58) (syst) GeV is measured. The overall systematic uncertainty is dominated by the uncertainty in the b quark fragmentation and the modeling of kinematic properties of the top quark.
2016
The Physics category includes resources of a broad, general nature that contain materials from all areas of physics, The category also includes resources specifically concerned with the following physics sub-fields: mathematical physics, particle and nuclear physics, physics of fluids and plasmas, quantum physics, and theoretical physics.
Esperti anonimi
Inglese
Internazionale
ELETTRONICO
93
092006
1
29
29
Nuclear and High Energy Physics
http://journals.aps.org/prd/pdf/10.1103/PhysRevD.93.092006
8
info:eu-repo/semantics/article
262
Braghieri, Alessandro; Magnani, Alice; Montagna, PAOLO MARIA; Ratti, SERGIO PEPPINO; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo...espandi
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1164357
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 15
social impact