Resveratrol (3,4',5-trihydroxy-trans-stilbene) is a phytoalexin found in grapes that has anti-inflammatory, cardiovascular protective, and cancer chemopreventive properties. It has been shown to target prostaglandin H(2) synthase (COX)-1 and COX-2, which catalyze the first committed step in the synthesis of prostaglandins via sequential cyclooxygenase and peroxidase reactions. Resveratrol discriminates between both COX isoforms. It is a potent inhibitor of both catalytic activities of COX-1, the desired drug target for the prevention of cardiovascular disease, but only a weak inhibitor of the peroxidase activity of COX-2, the isoform target for nonsteroidal anti-inflammatory drugs. We have investigated the unique inhibitory properties of resveratrol. We find that it is a potent peroxidase-mediated mechanism-based inactivator of COX-1 only (k(inact) = 0.069 +/- 0.004 s(-1), K(i(inact)) = 1.52 +/- 0.15 microm), with a calculated partition ratio of 22. Inactivation of COX-1 was time- and concentration-dependent, it had an absolute requirement for a peroxide substrate, and it was accompanied by a concomitant oxidation of resveratrol. Resveratrol-inactivated COX-1 was devoid of both the cyclooxygenase and peroxidase activities, neither of which could be restored upon gel-filtration chromatography. Inactivation of COX-1 by [(3)H]resveratrol was not accompanied by stable covalent modification as evident by both SDS-PAGE and reverse phase-high performance liquid chromatography analysis. Structure activity relationships on methoxy-resveratrol analogs showed that the m-hydroquinone moiety was essential for irreversible inactivation of COX-1. We propose that resveratrol inactivates COX-1 by a "hit-and-run" mechanism, and offers a basis for the design of selective COX-1 inactivators that work through a mechanism-based event at the peroxidase active site.
Resveratrol is a peroxidase-mediated inactivator of COX-1 but not COX-2: a mechanistic approach to the design of COX-1 selective agents.
STIVALA, LUCIA ANNA;
2004-01-01
Abstract
Resveratrol (3,4',5-trihydroxy-trans-stilbene) is a phytoalexin found in grapes that has anti-inflammatory, cardiovascular protective, and cancer chemopreventive properties. It has been shown to target prostaglandin H(2) synthase (COX)-1 and COX-2, which catalyze the first committed step in the synthesis of prostaglandins via sequential cyclooxygenase and peroxidase reactions. Resveratrol discriminates between both COX isoforms. It is a potent inhibitor of both catalytic activities of COX-1, the desired drug target for the prevention of cardiovascular disease, but only a weak inhibitor of the peroxidase activity of COX-2, the isoform target for nonsteroidal anti-inflammatory drugs. We have investigated the unique inhibitory properties of resveratrol. We find that it is a potent peroxidase-mediated mechanism-based inactivator of COX-1 only (k(inact) = 0.069 +/- 0.004 s(-1), K(i(inact)) = 1.52 +/- 0.15 microm), with a calculated partition ratio of 22. Inactivation of COX-1 was time- and concentration-dependent, it had an absolute requirement for a peroxide substrate, and it was accompanied by a concomitant oxidation of resveratrol. Resveratrol-inactivated COX-1 was devoid of both the cyclooxygenase and peroxidase activities, neither of which could be restored upon gel-filtration chromatography. Inactivation of COX-1 by [(3)H]resveratrol was not accompanied by stable covalent modification as evident by both SDS-PAGE and reverse phase-high performance liquid chromatography analysis. Structure activity relationships on methoxy-resveratrol analogs showed that the m-hydroquinone moiety was essential for irreversible inactivation of COX-1. We propose that resveratrol inactivates COX-1 by a "hit-and-run" mechanism, and offers a basis for the design of selective COX-1 inactivators that work through a mechanism-based event at the peroxidase active site.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.