The purpose of the present study was to evaluate the effect of nanofillers on the mechanical properties of 2 sizes (diameters 0.6 and 0.9 mm) of conventional and nanofilled fiber-reinforced composites (FRCs) polymerized with conventional light-curing and additional postcuring. METHODS: The FRCs samples were divided into 8 groups (10 specimens each). Conventional FRCs with glass fibers preimpregnated with polymethyl methacrylate (groups 1, 2, 3 and 4) and FRCs with impregnating solution containing 32% nanofilled resin (groups 5, 6, 7 and 8) were tested in 2 different sections (0.6 and 0.9 mm in diameter). Two different polymerizations were analyzed: hand light-curing for 40 seconds with an halogen light, and additional postcuring for 25 minutes in a light-curing oven. Each sample was evaluated with a 3-point bending test on a universal testing machine, after 48 hours of dry storage. All of the data were statistically analyzed. RESULTS: After oven postcuring, nanofilled FRCs exhibited significantly higher load values than conventional FRCs. No significant differences were found when comparing conventional and nanofilled FRCs after hand light-curing. Moreover, 0.6-mm FRCs showed significantly lower load values than 0.9-mm FRCs, both for conventional and nanofilled FRCs. CONCLUSIONS: Nanofilled FRCs showed higher load values after additional oven postcuring.
Effects of nanofillers on mechanical properties of fiber-reinforced composites polymerized with light-curing and additional postcuring
SCRIBANTE, ANDREA;MASSIRONI, SARAH;SFONDRINI, MARIA FRANCESCA;GANDINI, PAOLA
2015-01-01
Abstract
The purpose of the present study was to evaluate the effect of nanofillers on the mechanical properties of 2 sizes (diameters 0.6 and 0.9 mm) of conventional and nanofilled fiber-reinforced composites (FRCs) polymerized with conventional light-curing and additional postcuring. METHODS: The FRCs samples were divided into 8 groups (10 specimens each). Conventional FRCs with glass fibers preimpregnated with polymethyl methacrylate (groups 1, 2, 3 and 4) and FRCs with impregnating solution containing 32% nanofilled resin (groups 5, 6, 7 and 8) were tested in 2 different sections (0.6 and 0.9 mm in diameter). Two different polymerizations were analyzed: hand light-curing for 40 seconds with an halogen light, and additional postcuring for 25 minutes in a light-curing oven. Each sample was evaluated with a 3-point bending test on a universal testing machine, after 48 hours of dry storage. All of the data were statistically analyzed. RESULTS: After oven postcuring, nanofilled FRCs exhibited significantly higher load values than conventional FRCs. No significant differences were found when comparing conventional and nanofilled FRCs after hand light-curing. Moreover, 0.6-mm FRCs showed significantly lower load values than 0.9-mm FRCs, both for conventional and nanofilled FRCs. CONCLUSIONS: Nanofilled FRCs showed higher load values after additional oven postcuring.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.