Let X be an irreducible projective variety and let f : X → ℙn be a morphism.We give a new proof of the fact that the preimage of any linear variety of dimension k ≥ n+1−dim f(X) is connected.We show that the statement is a consequence of the Generalized Hodge Index Theorem using easy numerical arguments that hold in any characteristic.We also prove the connectedness Theorem of Fulton and Hansen as an application of our main theorem.

Connectedness Bertini Theorem via numerical equivalence

PIROLA, GIAN PIETRO
2017-01-01

Abstract

Let X be an irreducible projective variety and let f : X → ℙn be a morphism.We give a new proof of the fact that the preimage of any linear variety of dimension k ≥ n+1−dim f(X) is connected.We show that the statement is a consequence of the Generalized Hodge Index Theorem using easy numerical arguments that hold in any characteristic.We also prove the connectedness Theorem of Fulton and Hansen as an application of our main theorem.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1178086
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact