We show that two spatially separated semiconductor quantum dots under resonant and continuous-wave excitation can be strongly entangled in the steady state, thanks to their radiative coupling by mutual interaction through the normal modes of a photonic crystal dimer. We employ a quantum master equation formalism to quantify the steady-state entanglement by calculating the system negativity. Calculations are specified to consider realistic semiconductor nanostructure parameters for the photonic crystal dimer–quantum dots coupled system, determined by a guided-mode expansion solution of Maxwell equations. Negativity values of the order of 0.1 (20% of the maximum value) are shown for interdot distances that are larger than the resonant wavelength of the system. It is shown that the amount of entanglement is almost independent of the interdot distance, as long as the normal mode splitting of the photonic dimer is larger than their linewidths, which becomes the only requirement to achieve a local and individual qubit addressing. Considering inhomogeneously broadened quantum dots, we find that the steady-state entanglement is preserved as long as the detuning between the two quantum dot resonances is small when compared to their decay rates. The steady-state entanglement is shown to be robust against the effects of pure dephasing of the quantum dot transitions. We finally study the entanglement dynamics for a configuration in which one of the two quantum dots is initially excited and find that the transient negativity can be enhanced by more than a factor of two with respect to the steady-state value. These results are promising for practical applications of entangled states at short time scales.

Steady-state entanglement between distant quantum dots in photonic crystal dimers

GERACE, DARIO;
2016-01-01

Abstract

We show that two spatially separated semiconductor quantum dots under resonant and continuous-wave excitation can be strongly entangled in the steady state, thanks to their radiative coupling by mutual interaction through the normal modes of a photonic crystal dimer. We employ a quantum master equation formalism to quantify the steady-state entanglement by calculating the system negativity. Calculations are specified to consider realistic semiconductor nanostructure parameters for the photonic crystal dimer–quantum dots coupled system, determined by a guided-mode expansion solution of Maxwell equations. Negativity values of the order of 0.1 (20% of the maximum value) are shown for interdot distances that are larger than the resonant wavelength of the system. It is shown that the amount of entanglement is almost independent of the interdot distance, as long as the normal mode splitting of the photonic dimer is larger than their linewidths, which becomes the only requirement to achieve a local and individual qubit addressing. Considering inhomogeneously broadened quantum dots, we find that the steady-state entanglement is preserved as long as the detuning between the two quantum dot resonances is small when compared to their decay rates. The steady-state entanglement is shown to be robust against the effects of pure dephasing of the quantum dot transitions. We finally study the entanglement dynamics for a configuration in which one of the two quantum dots is initially excited and find that the transient negativity can be enhanced by more than a factor of two with respect to the steady-state value. These results are promising for practical applications of entangled states at short time scales.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1178757
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact