We report a systematic experimental study of the evolution of the magnetic and relaxometric properties as a function of metal (Co, Ni) doping in iron oxide nanoparticles. A set of five samples, having the same size and ranging from stoichiometric cobalt ferrite (CoFe2O4) to stoichiometric nickel ferrite (NiFe2O4) with intermediate doping steps, was ad hoc synthesized. Using both DC and AC susceptibility measurements, the evolution of the magnetic anisotropy depending on the doping is qualitatively discussed. In particular, we observed that the height of the magnetic anisotropy barrier is directly proportional to the amount of Co, while the Ni has an opposite effect. By Nuclear Magnetic Resonance Dispersion (NMR-D) experiments, the experimental longitudinal r1 and transverse r2 relaxivity profiles were obtained, and the heuristic theory of Roch et al. was used to analyze the data of both r1 and, for the first time, r2. While the experimental and fitting results obtained from r1 profiles were satisfying and confirmed the anisotropy trend, the model applied to r2 hardly explains the experimental findings.

On the magnetic anisotropy and nuclear relaxivity effects of Co and Ni doping in iron oxide nanoparticles

ORLANDO, TOMAS;CORTI, MAURIZIO ENRICO;Lascialfari, A.
2016-01-01

Abstract

We report a systematic experimental study of the evolution of the magnetic and relaxometric properties as a function of metal (Co, Ni) doping in iron oxide nanoparticles. A set of five samples, having the same size and ranging from stoichiometric cobalt ferrite (CoFe2O4) to stoichiometric nickel ferrite (NiFe2O4) with intermediate doping steps, was ad hoc synthesized. Using both DC and AC susceptibility measurements, the evolution of the magnetic anisotropy depending on the doping is qualitatively discussed. In particular, we observed that the height of the magnetic anisotropy barrier is directly proportional to the amount of Co, while the Ni has an opposite effect. By Nuclear Magnetic Resonance Dispersion (NMR-D) experiments, the experimental longitudinal r1 and transverse r2 relaxivity profiles were obtained, and the heuristic theory of Roch et al. was used to analyze the data of both r1 and, for the first time, r2. While the experimental and fitting results obtained from r1 profiles were satisfying and confirmed the anisotropy trend, the model applied to r2 hardly explains the experimental findings.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1178952
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact