Nanoconfinement of 2LiBH(4)-MgH2 composite into carbon aerogel scaffold (CAS) impregnated with zirconium (IV) chloride (ZrCl4) for reversible hydrogen storage is proposed. Nanoconfined samples prepared with hydride:ZrCl4-doped CAS weight ratios of 1:1, 1:2, and 1:3 are prepared by melt infiltration technique. Successful nanoconfinement of all samples is confirmed and it is found that the sample with high content of hydride with respect to ZrCl4-doped CAS (1:1 weight ratio) shows partial pore blocking. The most suitable hydride:ZrCl4-doped CAS weight ratio providing the best performance based on dehydrogenation temperature and kinetics as well as hydrogen storage capacity is 1:2. Reduction of dehydrogenation temperature and faster kinetics are obtained after doping with ZrCl4. Up to 97 and 93% of theoretical hydrogen storage capacity are released and reproduced after four cycles of nanoconfined sample with ZrCl4 (1:2 weight ratio). Deficient hydrogen content with respect to theoretical capacity can be due to partial dehydrogenation during melt infiltration and formation of thermally stable [B12H12](2-) phases during cycling.

2LiBH(4)-MgH2 nanoconfined into carbon aerogel scaffold impregnated with ZrCl4 for reversible hydrogen storage

MILANESE, CHIARA;
2016-01-01

Abstract

Nanoconfinement of 2LiBH(4)-MgH2 composite into carbon aerogel scaffold (CAS) impregnated with zirconium (IV) chloride (ZrCl4) for reversible hydrogen storage is proposed. Nanoconfined samples prepared with hydride:ZrCl4-doped CAS weight ratios of 1:1, 1:2, and 1:3 are prepared by melt infiltration technique. Successful nanoconfinement of all samples is confirmed and it is found that the sample with high content of hydride with respect to ZrCl4-doped CAS (1:1 weight ratio) shows partial pore blocking. The most suitable hydride:ZrCl4-doped CAS weight ratio providing the best performance based on dehydrogenation temperature and kinetics as well as hydrogen storage capacity is 1:2. Reduction of dehydrogenation temperature and faster kinetics are obtained after doping with ZrCl4. Up to 97 and 93% of theoretical hydrogen storage capacity are released and reproduced after four cycles of nanoconfined sample with ZrCl4 (1:2 weight ratio). Deficient hydrogen content with respect to theoretical capacity can be due to partial dehydrogenation during melt infiltration and formation of thermally stable [B12H12](2-) phases during cycling.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1181033
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 30
social impact