In undisturbed tropical montane rainforests massive organic layers accommodate the majority of roots and only a small fraction of roots penetrate the mineral soil. We investigated the contribution of vegetation to slope stability in such environments by modifying a standard model for slope stability to include an organic layer with distinct mechanical properties. The importance of individual model parameters was evaluated using detailed measurements of soil and vegetation properties to reproduce the observed depth of 11 shallow landslides in the Andes of southern Ecuador. By distinguishing mineral soil, organic layer and above-ground biomass, it is shown that in this environment vegetation provides a destabilizing effect mainly due to its contribution to the mass of the organic layer (up to 973 t ha-1 under wet conditions). Sensitivity analysis shows that the destabilizing effect of the mass of soil and vegetation can only be effective on slopes steeper than 37.9°. This situation applies to 36% of the study area. Thus, on the steep slopes of this megadiverse ecosystem, the mass of the growing forest promotes landsliding, which in turn promotes a new cycle of succession. This feedback mechanism is worth consideration in further investigations of the impact of landslides on plant diversity in similar environments. © 2012 John Wiley & Sons, Ltd.

Biotic controls on shallow translational landslides

MAERKER, MICHAEL;
2013-01-01

Abstract

In undisturbed tropical montane rainforests massive organic layers accommodate the majority of roots and only a small fraction of roots penetrate the mineral soil. We investigated the contribution of vegetation to slope stability in such environments by modifying a standard model for slope stability to include an organic layer with distinct mechanical properties. The importance of individual model parameters was evaluated using detailed measurements of soil and vegetation properties to reproduce the observed depth of 11 shallow landslides in the Andes of southern Ecuador. By distinguishing mineral soil, organic layer and above-ground biomass, it is shown that in this environment vegetation provides a destabilizing effect mainly due to its contribution to the mass of the organic layer (up to 973 t ha-1 under wet conditions). Sensitivity analysis shows that the destabilizing effect of the mass of soil and vegetation can only be effective on slopes steeper than 37.9°. This situation applies to 36% of the study area. Thus, on the steep slopes of this megadiverse ecosystem, the mass of the growing forest promotes landsliding, which in turn promotes a new cycle of succession. This feedback mechanism is worth consideration in further investigations of the impact of landslides on plant diversity in similar environments. © 2012 John Wiley & Sons, Ltd.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1182377
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 7
social impact