Mesenchymal stem cells (MSC) possess high plasticity and the potential to differentiate into several different cell types; this characteristic has implications for cell therapy and reparative biotechnologies. MSC have been originally isolated from the bone marrow (BM-MSC), but they have been found also in other tissues such as adipose tissue, cord blood, synovium, skeletal muscle, and lung. MSC are able to differentiate in vitro and in vivo into several cell types such as bone, osteocytes, chondrocytes, adipocytes, and skeletal myocytes, just to name a few.During the last two decades, an increasing number of studies have proven the therapeutic potential of MSC for the treatment of neurodegenerative diseases, spinal cord and brain injuries, cardiovascular diseases, diabetes mellitus, and diseases of the skeleton. Their immuno-privileged profile allows both autologous and allogeneic use. For all these reasons, the scientific appeal of MSC is constantly on the rise.The identity of MSC is currently based on three main criteria: plastic-adherence capacity, defined epitope profile, and capacity to differentiate in vitro into osteocytes, chondrocytes, and adipocytes. Here, we describe standard protocols for the differentiation of BM-MSC into the osteogenic, chondrogenic, and adipogenic lineages.
Protocols for in vitro differentiation of human mesenchymal stem cells into osteogenic, chondrogenic and adipogenic lineages
MALPASSO, GIUSEPPE;MUSARO', PAOLA;GNECCHI, MASSIMILIANO
2016-01-01
Abstract
Mesenchymal stem cells (MSC) possess high plasticity and the potential to differentiate into several different cell types; this characteristic has implications for cell therapy and reparative biotechnologies. MSC have been originally isolated from the bone marrow (BM-MSC), but they have been found also in other tissues such as adipose tissue, cord blood, synovium, skeletal muscle, and lung. MSC are able to differentiate in vitro and in vivo into several cell types such as bone, osteocytes, chondrocytes, adipocytes, and skeletal myocytes, just to name a few.During the last two decades, an increasing number of studies have proven the therapeutic potential of MSC for the treatment of neurodegenerative diseases, spinal cord and brain injuries, cardiovascular diseases, diabetes mellitus, and diseases of the skeleton. Their immuno-privileged profile allows both autologous and allogeneic use. For all these reasons, the scientific appeal of MSC is constantly on the rise.The identity of MSC is currently based on three main criteria: plastic-adherence capacity, defined epitope profile, and capacity to differentiate in vitro into osteocytes, chondrocytes, and adipocytes. Here, we describe standard protocols for the differentiation of BM-MSC into the osteogenic, chondrogenic, and adipogenic lineages.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.