We present a design for a two-dimensional photonic crystal slab cavity in which the electric field localization is due to an extra hole in the lattice, as opposed to the more standard procedure of removal of holes. This leads to a tighter field confinement and a mode volume that is several times smaller than that of conventionally used designs. Through small modifications of the holes around the cavity, we optimize the theoretical quality factor (Q) to an ultra-high value of 20.9 million, and furthermore illustrate the possibility for high coupling efficiency to free-space modes in the vertical direction, while keeping a high Q of 3.7 million.

Photonic crystal slab cavity simultaneously optimized for ultra-high Q/V and vertical radiation coupling

GERACE, DARIO
2017-01-01

Abstract

We present a design for a two-dimensional photonic crystal slab cavity in which the electric field localization is due to an extra hole in the lattice, as opposed to the more standard procedure of removal of holes. This leads to a tighter field confinement and a mode volume that is several times smaller than that of conventionally used designs. Through small modifications of the holes around the cavity, we optimize the theoretical quality factor (Q) to an ultra-high value of 20.9 million, and furthermore illustrate the possibility for high coupling efficiency to free-space modes in the vertical direction, while keeping a high Q of 3.7 million.
2017
Applied Physics/Condensed Matter/Materials Science encompasses the resources of three related disciplines: Applied Physics, Condensed Matter Physics, and Materials Science. The applied physics resources are concerned with the applications of topics in condensed matter as well as optics, vacuum science, lasers, electronics, cryogenics, magnets and magnetism, acoustical physics and mechanics. The condensed matter physics resources are concerned with the study of the structure and the thermal, mechanical, electrical, magnetic and optical properties of condensed matter. They include superconductivity, surfaces, interfaces, thin films, dielectrics, ferroelectrics and semiconductors. The materials science resources are concerned with the physics and chemistry of materials and include ceramics, composites, alloys, metals and metallurgy, nanotechnology, nuclear materials, adhesion and adhesives. Resources dealing with polymeric materials are listed in the Organic Chemistry/Polymer Science category.
The Physics category includes resources of a broad, general nature that contain materials from all areas of physics, The category also includes resources specifically concerned with the following physics sub-fields: mathematical physics, particle and nuclear physics, physics of fluids and plasmas, quantum physics, and theoretical physics.
Esperti anonimi
Inglese
Internazionale
STAMPA
111
131104
4
Photonic crystals, cavities, optimization
http://aip.scitation.org/doi/abs/10.1063/1.4991416
3
info:eu-repo/semantics/article
262
Minkov, M.; Savona, V.; Gerace, Dario
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1196918
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 42
social impact