The present paper introduces a methodology for the high-cycle fatigue design of balloon-expandable stents. The proposed approach is based on a micromechanical model coupled with a probabilistic methodology for the failure prediction of stents. This allows to account for material heterogeneity and fatigue scatter, to introduce a fatigue criterion able to consider stress gradients, and to perform a probabilistic analysis to obtain general predictions from a limited number of realizations of microstructures investigated. Numerical simulations have allowed to highlight the noteworthy characteristics of the mechanical response in the stent as well as the heterogeneity of the mechanical fields due to stress concentrations in the unit cell geometry and to strain incompatibilities between the grains induced by the anisotropy of their mechanical behavior. The predicted survival probability of the stent is in accordance with the experimental data from the literature. Moreover, the influence of the amplitude of the arterial pressure on the fatigue strength of the stent has been evaluated.

Micromechanical modeling for the probabilistic failure prediction of stents in high-cycle fatigue

Scalet, Giulia;Auricchio, Ferdinando
2016-01-01

Abstract

The present paper introduces a methodology for the high-cycle fatigue design of balloon-expandable stents. The proposed approach is based on a micromechanical model coupled with a probabilistic methodology for the failure prediction of stents. This allows to account for material heterogeneity and fatigue scatter, to introduce a fatigue criterion able to consider stress gradients, and to perform a probabilistic analysis to obtain general predictions from a limited number of realizations of microstructures investigated. Numerical simulations have allowed to highlight the noteworthy characteristics of the mechanical response in the stent as well as the heterogeneity of the mechanical fields due to stress concentrations in the unit cell geometry and to strain incompatibilities between the grains induced by the anisotropy of their mechanical behavior. The predicted survival probability of the stent is in accordance with the experimental data from the literature. Moreover, the influence of the amplitude of the arterial pressure on the fatigue strength of the stent has been evaluated.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1197370
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact