View references (23) We study the components of the Hurwitz scheme of ramified coverings of P1 with monodromy given by the alternating group A6 and elements in the conjugacy class of product of two disjoint cycles. In order to detect the connected components of the Hurwitz scheme, inspired by the case of the spin structures studied by Fried for the 3-cycles, we use as invariant the lifting to the Valentiner group, a triple covering of A6. We prove that the Hurwitz scheme has two irreducible components when the genus of the covering is greater than zero, in accordance with the asymptotic solution found by Bogomolov and Kulikov.

Hurwitz spaces and liftings to the Valentiner group

MOSCHETTI, RICCARDO;Pirola, Gian Pietro
2018-01-01

Abstract

View references (23) We study the components of the Hurwitz scheme of ramified coverings of P1 with monodromy given by the alternating group A6 and elements in the conjugacy class of product of two disjoint cycles. In order to detect the connected components of the Hurwitz scheme, inspired by the case of the spin structures studied by Fried for the 3-cycles, we use as invariant the lifting to the Valentiner group, a triple covering of A6. We prove that the Hurwitz scheme has two irreducible components when the genus of the covering is greater than zero, in accordance with the asymptotic solution found by Bogomolov and Kulikov.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1203847
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact