We give an upper bound for the dimension of a germ of a totally geodesic sub-manifold, and hence of a Shimura variety of Ag−1, contained in the Prym locus. First we givesuch a bound for a germ passing through a Prym variety of ak-gonal curve in terms of thegonality k. Then we deduce a bound only depending on the genus g.

A bound on the dimension of a totally geodesic submanifold in the Prym locus

Frediani P.
2019-01-01

Abstract

We give an upper bound for the dimension of a germ of a totally geodesic sub-manifold, and hence of a Shimura variety of Ag−1, contained in the Prym locus. First we givesuch a bound for a germ passing through a Prym variety of ak-gonal curve in terms of thegonality k. Then we deduce a bound only depending on the genus g.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1209908
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact