Organic nanotubes, as assembled nanospaces, in which to carry out host–guest chemistry, reversible binding of smaller species for transport, sensing, storage or chemical transformation purposes, are currently attracting substantial interest, both as biological ion channel mimics, or for addressing tailored material properties. Nature’s materials and machinery are universally asymmetric, and, for chemical entities, controlled asymmetry comes from chirality. Together with carbon nanotubes, conformationally stable molecular building blocks and macrocycles have been used for the realization of organic nanotubes, by means of their assembly in the third dimension. In both cases, chiral properties have started to be fully exploited to date. In this paper, we review recent exciting developments in the synthesis and assembly of chiral nanotubes, and of their functional properties. This review will include examples of either molecule-based or macrocycle-based systems, and will try and rationalize the supramolecular interactions at play for the three-dimensional (3D) assembly of the nanoscale architectures.

Chiral Nanotubes

NITTI, ANDREA;PACINI, AURORA;Dario Pasini
2017-01-01

Abstract

Organic nanotubes, as assembled nanospaces, in which to carry out host–guest chemistry, reversible binding of smaller species for transport, sensing, storage or chemical transformation purposes, are currently attracting substantial interest, both as biological ion channel mimics, or for addressing tailored material properties. Nature’s materials and machinery are universally asymmetric, and, for chemical entities, controlled asymmetry comes from chirality. Together with carbon nanotubes, conformationally stable molecular building blocks and macrocycles have been used for the realization of organic nanotubes, by means of their assembly in the third dimension. In both cases, chiral properties have started to be fully exploited to date. In this paper, we review recent exciting developments in the synthesis and assembly of chiral nanotubes, and of their functional properties. This review will include examples of either molecule-based or macrocycle-based systems, and will try and rationalize the supramolecular interactions at play for the three-dimensional (3D) assembly of the nanoscale architectures.
2017
The Organic Chemistry/Polymer Science category includes resources concerned with the related fields of organic chemistry and polymer science. The organic chemistry resources deal with compounds of carbon with the exception of certain simple ones, such as the carbon oxides, carbonates, cyanides and cyanates (see Inorganic & Nuclear Chemistry). This category includes research on synthetic and natural organic compounds that may include other elements, such as hydrogen and oxygen, but also nitrogen, halogens, sulphur and phosphorous. Resources concerned with hydrocarbons, organic compounds containing only the elements carbon and hydrogen, are also included in this category. Examples are the alkanes, alkenes, alkynes and aromatics, such as benzene and naphthalene. Polymer science includes all resources dealing with the study, production and technology of polymers, which are compounds composed of very large molecules made up of repeating molecular units (monomers). Polymers may be natural substances, such as polysaccharides or proteins, or synthetic materials, such as nylon or polyethylene.
Esperti anonimi
Inglese
Internazionale
ELETTRONICO
7
7
167
23
Chirality; nanotubes; three-dimensional (3D) assembly; supramolecular polymers; anisotropic materials
no
3
info:eu-repo/semantics/article
262
Nitti, Andrea; Pacini, Aurora; Pasini, Dario
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1209943
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 29
social impact