Microsecond time scale molecular dynamics simulations of the 13-residue peptide RN24 were carried out to investigate the mechanism of helix nucleation and propagation. An extended and an ideal alpha-helical conformation were used as starting structures. NOE-derived interatomic distances were compared with distances calculated from the simulations, showing good agreement between experimental and simulation results. Based on almost 200 helix nucleation events observed, beta-turn and 3(10)-helix play an important role in helix nucleation; in most cases, helix nucleation is preceded by the formation of a short-lived beta-turn (60\% probability) or 3(10)-helix (20\% probability), and the conversion from beta-turn to alpha-turn involves bifurcated hydrogen bonds. Helix propagation in RN24 appears to occur preferentially from the N-terminus to the C-terminus, and helix unfolding preferentially in the opposite direction.

Mechanism of helix nucleation and propagation: Microscopic view from microsecond time scale MD simulations

Colombo G
2005-01-01

Abstract

Microsecond time scale molecular dynamics simulations of the 13-residue peptide RN24 were carried out to investigate the mechanism of helix nucleation and propagation. An extended and an ideal alpha-helical conformation were used as starting structures. NOE-derived interatomic distances were compared with distances calculated from the simulations, showing good agreement between experimental and simulation results. Based on almost 200 helix nucleation events observed, beta-turn and 3(10)-helix play an important role in helix nucleation; in most cases, helix nucleation is preceded by the formation of a short-lived beta-turn (60\% probability) or 3(10)-helix (20\% probability), and the conversion from beta-turn to alpha-turn involves bifurcated hydrogen bonds. Helix propagation in RN24 appears to occur preferentially from the N-terminus to the C-terminus, and helix unfolding preferentially in the opposite direction.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1209958
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 32
social impact