Improvements to the confinement method for the calculation of conformational free energy differences are presented. By taking advantage of phase space overlap between simulations at different frequencies, significant gains in accuracy and speed are reached. The optimal frequency spacing for the simulations is obtained from extrapolations of the confinement energy, and relaxation time analysis is used to determine time steps, simulation lengths, and friction coefficients. At postprocessing, interpolation of confinement energies is used to significantly reduce discretization errors in the calculation of conformational free energies. The efficiency of this protocol is illustrated by applications to alanine n-peptides and lactoferricin. For the alanine-n-peptide, errors were reduced between 2- and 10-fold and sampling times between 8- and 67-fold, while for lactoferricin the long sampling times at low frequencies were reduced 10100-fold.

Balancing Accuracy and Cost of Confinement Simulations by Interpolation and Extrapolation of Confinement Energies

Colombo Giorgio;
2016-01-01

Abstract

Improvements to the confinement method for the calculation of conformational free energy differences are presented. By taking advantage of phase space overlap between simulations at different frequencies, significant gains in accuracy and speed are reached. The optimal frequency spacing for the simulations is obtained from extrapolations of the confinement energy, and relaxation time analysis is used to determine time steps, simulation lengths, and friction coefficients. At postprocessing, interpolation of confinement energies is used to significantly reduce discretization errors in the calculation of conformational free energies. The efficiency of this protocol is illustrated by applications to alanine n-peptides and lactoferricin. For the alanine-n-peptide, errors were reduced between 2- and 10-fold and sampling times between 8- and 67-fold, while for lactoferricin the long sampling times at low frequencies were reduced 10100-fold.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1210043
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact