Breast cancer is a malignancy with a strong heritable component. Genetic counseling has been principally focused on families carrying high-penetrance breast cancer 1/2, early onset genes. Current modeling suggests that the majority of the unexplained fraction of familial risk is likely to be explained by a polygenic model. The aim of the present study was to estimate the heritability (h2) of breast cancer susceptibility through the analysis of 6 single nucleotide polymorphisms (SNPs), nuclear mitotic apparatus protein 1, cyclin D1, cytochrome C oxidase copper chaperone, fibroblast growth factor receptor 2, TOX high mobility group box family member 3 and solute carrier family 4 member 7. These 6 SNPs, previously identified by genome-wide association studies, were considered to evaluate the additive and common environmental components that contribute to the development of breast cancer in nuclear (pedigrees including only first degree relationships) and in extended families (with at most third degree relationships). A total of 22 extended pedigrees, subsequently split into 52 nuclear pedigrees were analyzed. An example of splitting process from extended to nuclear pedigree is shown in Fig. 1. Firstly, an underline latent continuous trait (Y*) using breast cancer status and information of 6 breast cancer-associated SNPs was calculated. This novel trait summarized the susceptibility of breast cancer in each individual. Secondly, the h2 of Y* was estimated using an additive polygenic-common environment-unique error model. h2 was evaluated in extended and immediate pedigrees, obtaining comparable results. h2 accounts for ~40% of the total phenotypic variance, indicating a fairly strong additive genetic effect of breast cancer susceptibility. The present study indicated the importance of the evaluation and consideration of these six SNPs, which can be used as instrumental variables in order to obtain improved genetic models that are useful for h2 analysis.

Six low-penetrance SNPs for the estimation of breast cancer heritability: A family-based study in Caucasian Italian patients

Graziano F;Grassi M;
2017-01-01

Abstract

Breast cancer is a malignancy with a strong heritable component. Genetic counseling has been principally focused on families carrying high-penetrance breast cancer 1/2, early onset genes. Current modeling suggests that the majority of the unexplained fraction of familial risk is likely to be explained by a polygenic model. The aim of the present study was to estimate the heritability (h2) of breast cancer susceptibility through the analysis of 6 single nucleotide polymorphisms (SNPs), nuclear mitotic apparatus protein 1, cyclin D1, cytochrome C oxidase copper chaperone, fibroblast growth factor receptor 2, TOX high mobility group box family member 3 and solute carrier family 4 member 7. These 6 SNPs, previously identified by genome-wide association studies, were considered to evaluate the additive and common environmental components that contribute to the development of breast cancer in nuclear (pedigrees including only first degree relationships) and in extended families (with at most third degree relationships). A total of 22 extended pedigrees, subsequently split into 52 nuclear pedigrees were analyzed. An example of splitting process from extended to nuclear pedigree is shown in Fig. 1. Firstly, an underline latent continuous trait (Y*) using breast cancer status and information of 6 breast cancer-associated SNPs was calculated. This novel trait summarized the susceptibility of breast cancer in each individual. Secondly, the h2 of Y* was estimated using an additive polygenic-common environment-unique error model. h2 was evaluated in extended and immediate pedigrees, obtaining comparable results. h2 accounts for ~40% of the total phenotypic variance, indicating a fairly strong additive genetic effect of breast cancer susceptibility. The present study indicated the importance of the evaluation and consideration of these six SNPs, which can be used as instrumental variables in order to obtain improved genetic models that are useful for h2 analysis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1210268
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact