The dendritic processing in cerebellar Purkinje cells (PCs), which integrate synaptic inputs coming from hundreds of thousands granule cells and molecular layer interneurons, is still unclear. Here we have tested a leading hypothesis maintaining that the significant PC output code is represented by burst-pause responses (BPRs), by simulating PC responses in a biophysically detailed model that allowed to systematically explore a broad range of input patterns. BPRs were generated by input bursts and were more prominent in Zebrin positive than Zebrin negative (Z+ and Z-) PCs. Different combinations of parallel fiber and molecular layer interneuron synapses explained type I, II and III responses observed in vivo. BPRs were generated intrinsically by Ca-dependent K channel activation in the somato-dendritic compartment and the pause was reinforced by molecular layer interneuron inhibition. BPRs faithfully reported the duration and intensity of synaptic inputs, such that synaptic conductance tuned the number of spikes and release probability tuned their regularity in the millisecond range. Interestingly, the burst and pause of BPRs depended on the stimulated dendritic zone reflecting the different input conductance and local engagement of voltage-dependent channels. Multiple local inputs combined their actions generating complex spatio-temporal patterns of dendritic activity and BPRs. Thus, local control of intrinsic dendritic mechanisms by synaptic inputs emerges as a fundamental PC property in activity regimens characterized by bursting inputs from granular and molecular layer neurons

Synaptic activation of a detailed Purkinje cell model predicts voltage-dependent control of burst-pause responses in active dendrites

Masoli, Stefano
;
D’Angelo, Egidio
2017-01-01

Abstract

The dendritic processing in cerebellar Purkinje cells (PCs), which integrate synaptic inputs coming from hundreds of thousands granule cells and molecular layer interneurons, is still unclear. Here we have tested a leading hypothesis maintaining that the significant PC output code is represented by burst-pause responses (BPRs), by simulating PC responses in a biophysically detailed model that allowed to systematically explore a broad range of input patterns. BPRs were generated by input bursts and were more prominent in Zebrin positive than Zebrin negative (Z+ and Z-) PCs. Different combinations of parallel fiber and molecular layer interneuron synapses explained type I, II and III responses observed in vivo. BPRs were generated intrinsically by Ca-dependent K channel activation in the somato-dendritic compartment and the pause was reinforced by molecular layer interneuron inhibition. BPRs faithfully reported the duration and intensity of synaptic inputs, such that synaptic conductance tuned the number of spikes and release probability tuned their regularity in the millisecond range. Interestingly, the burst and pause of BPRs depended on the stimulated dendritic zone reflecting the different input conductance and local engagement of voltage-dependent channels. Multiple local inputs combined their actions generating complex spatio-temporal patterns of dendritic activity and BPRs. Thus, local control of intrinsic dendritic mechanisms by synaptic inputs emerges as a fundamental PC property in activity regimens characterized by bursting inputs from granular and molecular layer neurons
2017
Cell & Developmental Biology contains resources in biochemistry, molecular biology, biophysics, physiology, and pharmacology that have a specific emphasis on cellular function in eukaryotic systems. Topics of particular importance include receptor biology and signal transduction, regulation of gene expression at the cellular level, developmental genetics, developmental biology and morphogenesis, and cell-environment interactions. Resources concentrated on molecular biochemistry and molecular regulation of gene expression, as well as microscopic or histological analysis of cell or tissue samples are excluded.
Physiology considers resources that study the regulation of biological functions at the level of the whole organism. This includes research from biochemical, cell biological and whole system studies of human and animal physiology. Comparative physiology, biological rhythms, and physiological measurement are also included. Resources emphasizing cellular regulation, or the physiology of specific organs are excluded and are covered in the Cell & Developmental Biology and Medical Research: Organs & Systems categories.
Esperti anonimi
Inglese
Internazionale
STAMPA
11
278
Cerebellum; Dendrites; Modeling; Purkinje cell; Synapses; Cellular and Molecular Neuroscience
http://journal.frontiersin.org/article/10.3389/fncel.2017.00278/full
no
2
info:eu-repo/semantics/article
262
Masoli, Stefano; D’Angelo, Egidio
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1210314
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 27
social impact