We propose the new notion of Visco-Energetic solutions to rate-independent systems (X, E, d) driven by a time dependent energy E and a dissipation quasi-distance d in a general metric-topological space X. As for the classic Energetic approach, solutions can be obtained by solving a modified time Incremental Minimization Scheme, where at each step the dissipation quasi-distance d is incremented by a viscous correction δ (for example proportional to the square of the distance d), which penalizes far distance jumps by inducing a localized version of the stability condition. We prove a general convergence result and a typical characterization by Stability and Energy Balance in a setting comparable to the standard energetic one, thus capable of covering a wide range of applications. The new refined Energy Balance condition compensates for the localized stability and provides a careful description of the jump behavior: at every jump the solution follows an optimal transition, which resembles in a suitable variational sense the discrete scheme that has been implemented for the whole construction.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Viscous Corrections of the Time Incremental Minimization Scheme and Visco-Energetic Solutions to Rate-Independent Evolution Problems | |
Autori: | SAVARE', GIUSEPPE (Corresponding) | |
Data di pubblicazione: | 2018 | |
Rivista: | ||
Abstract: | We propose the new notion of Visco-Energetic solutions to rate-independent systems (X, E, d) driven by a time dependent energy E and a dissipation quasi-distance d in a general metric-topological space X. As for the classic Energetic approach, solutions can be obtained by solving a modified time Incremental Minimization Scheme, where at each step the dissipation quasi-distance d is incremented by a viscous correction δ (for example proportional to the square of the distance d), which penalizes far distance jumps by inducing a localized version of the stability condition. We prove a general convergence result and a typical characterization by Stability and Energy Balance in a setting comparable to the standard energetic one, thus capable of covering a wide range of applications. The new refined Energy Balance condition compensates for the localized stability and provides a careful description of the jump behavior: at every jump the solution follows an optimal transition, which resembles in a suitable variational sense the discrete scheme that has been implemented for the whole construction. | |
Handle: | http://hdl.handle.net/11571/1210570 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |