The growing interest in light-driven molecular switches and optical oscillators led to the development of molecules that are able to interconvert from a stable to a metastable configuration upon photochemical triggering and to return to the thermodynamically stable form as soon as the light stimulus is removed. Controlling a wide range of back-isomerization lifetimes in the dark is a crucial goal for potential application of these compounds such as molecular machines. We herein present a novel class of easily synthesizable azo photoswitches based on the arylazoindole core. Most notably, minimal modifications of the core, such as methylation, dramatically change the Z-to-E thermal isomerization rate from days (Me in position 1) to the nanosecond range (Me in position 2). Moreover, fine-tuning of the Z-to-E lifetimes can be achieved choosing a proper dimethyl sulfoxide−water (or buffered water) solvent mixture. The photochemical and thermal mechanisms have been elucidated by a thorough computational and spectroscopic analysis. This allowed to detect three different pathways of thermal isomerization and to identify the hydrazone tautomer of the phenylazoindole as the major actor in the fast Z−E thermal isomerization of the NH-substituted switch in protic media.

Tuning the Thermal Isomerization of Phenylazoindole Photoswitches from Days to Nanoseconds

Crespi S.;Fagnoni M.;
2018-01-01

Abstract

The growing interest in light-driven molecular switches and optical oscillators led to the development of molecules that are able to interconvert from a stable to a metastable configuration upon photochemical triggering and to return to the thermodynamically stable form as soon as the light stimulus is removed. Controlling a wide range of back-isomerization lifetimes in the dark is a crucial goal for potential application of these compounds such as molecular machines. We herein present a novel class of easily synthesizable azo photoswitches based on the arylazoindole core. Most notably, minimal modifications of the core, such as methylation, dramatically change the Z-to-E thermal isomerization rate from days (Me in position 1) to the nanosecond range (Me in position 2). Moreover, fine-tuning of the Z-to-E lifetimes can be achieved choosing a proper dimethyl sulfoxide−water (or buffered water) solvent mixture. The photochemical and thermal mechanisms have been elucidated by a thorough computational and spectroscopic analysis. This allowed to detect three different pathways of thermal isomerization and to identify the hydrazone tautomer of the phenylazoindole as the major actor in the fast Z−E thermal isomerization of the NH-substituted switch in protic media.
File in questo prodotto:
File Dimensione Formato  
2 Tuning the Thermal Isomerization of Phenylazoindole_18_DRAFT.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1211152
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 91
  • ???jsp.display-item.citation.isi??? 84
social impact