Megakaryocytes (MK) in the bone marrow (BM) are immersed in a network of extracellular matrix components that regulates platelet release into the circulation. Combining biological and bioengineering approaches, we found that the activation of transient receptor potential cation channel subfamily V member 4 (TRPV4), a mechano-sensitive ion channel, is induced upon MK adhesion on softer matrices. This response promoted platelet production by triggering a cascade of events that lead to calcium influx, β1 integrin activation and internalization, and Akt phosphorylation, responses not found on stiffer matrices. Lysyl oxidase (LOX) is a physiological modulator of BM matrix stiffness via collagen crosslinking. In vivo inhibition of LOX and consequent matrix softening lead to TRPV4 activation cascade and increased platelet levels. At the same time, in vitro proplatelet formation was reduced on a recombinant enzyme-mediated stiffer collagen. These results suggest a novel mechanism by which MKs, through TRPV4, sense extracellular matrix environmental rigidity and release platelets accordingly.

A new path to platelet production through matrix sensing

Abbonante, Vittorio;di Buduo, Christian Andrea;Gruppi, Cristian;Raspanti, Mario;Moccia, Francesco;Balduini, Alessandra
2017-01-01

Abstract

Megakaryocytes (MK) in the bone marrow (BM) are immersed in a network of extracellular matrix components that regulates platelet release into the circulation. Combining biological and bioengineering approaches, we found that the activation of transient receptor potential cation channel subfamily V member 4 (TRPV4), a mechano-sensitive ion channel, is induced upon MK adhesion on softer matrices. This response promoted platelet production by triggering a cascade of events that lead to calcium influx, β1 integrin activation and internalization, and Akt phosphorylation, responses not found on stiffer matrices. Lysyl oxidase (LOX) is a physiological modulator of BM matrix stiffness via collagen crosslinking. In vivo inhibition of LOX and consequent matrix softening lead to TRPV4 activation cascade and increased platelet levels. At the same time, in vitro proplatelet formation was reduced on a recombinant enzyme-mediated stiffer collagen. These results suggest a novel mechanism by which MKs, through TRPV4, sense extracellular matrix environmental rigidity and release platelets accordingly.
2017
Cell & Developmental Biology contains resources in biochemistry, molecular biology, biophysics, physiology, and pharmacology that have a specific emphasis on cellular function in eukaryotic systems. Topics of particular importance include receptor biology and signal transduction, regulation of gene expression at the cellular level, developmental genetics, developmental biology and morphogenesis, and cell-environment interactions. Resources concentrated on molecular biochemistry and molecular regulation of gene expression, as well as microscopic or histological analysis of cell or tissue samples are excluded.
Esperti anonimi
Inglese
Internazionale
STAMPA
102
7
1150
1160
11
Hematology, calcium, silk, collagen, extracellular matrix, bone marrow, stiffness, signal transduction
http://www.haematologica.org/content/haematol/102/7/1150.full.pdf
13
info:eu-repo/semantics/article
262
Abbonante, Vittorio; di Buduo, Christian Andrea; Gruppi, Cristian; De Maria, Carmelo; Spedden, Elise; de Acutis, Aurora; Staii, Cristian; Raspanti, Ma...espandi
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1214232
Citazioni
  • ???jsp.display-item.citation.pmc??? 32
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 56
social impact