ZnFe2O4 ferrite nanoparticles are arousing a great interest in the biomedical field, thanks to their superparamagnetic behavior at room temperature. Functional properties depend on composition, size, nanoparticle architecture and, in turn, on the synthesis methods. Bulk ZnFe2O4 has the normal spinel structure (all Zn2+ ions in tetrahedral and all Fe3+ ions in octahedral positions), but at the nanometric size inversion takes place with a cationic mixing on divalent and trivalent sites. The sensitivity of the Raman probe to cation disorder favored the appearance of several works on a rich variety of nanosized zinc ferrites. An overview on these results is reported and discussed at variance with synthesis methods, grain dimensions, and dopants. We add to this landscape our results from new nanosized powder samples made by microwave-assisted combustion, with different dopants (Ca, Sr on Zn site and Al, Gd on Fe site). A detailed analysis of A1g, Eg, 3F2g Raman modes has been performed and Raman band parameters have been derived from bestfitting procedures and carefully compared to literature data. The vibrational results are discussed taking into account the characterization from X-ray powder diffraction raction, SEM-EDS probe, EPR spectroscopy and, of course, the magnetic responses.

Raman Spectroscopy in Zinc Ferrites Nanoparticles

Marcella Bini;Pietro Galinetto
;
Maria Cristina Mozzati;Benedetta Albini
2018

Abstract

ZnFe2O4 ferrite nanoparticles are arousing a great interest in the biomedical field, thanks to their superparamagnetic behavior at room temperature. Functional properties depend on composition, size, nanoparticle architecture and, in turn, on the synthesis methods. Bulk ZnFe2O4 has the normal spinel structure (all Zn2+ ions in tetrahedral and all Fe3+ ions in octahedral positions), but at the nanometric size inversion takes place with a cationic mixing on divalent and trivalent sites. The sensitivity of the Raman probe to cation disorder favored the appearance of several works on a rich variety of nanosized zinc ferrites. An overview on these results is reported and discussed at variance with synthesis methods, grain dimensions, and dopants. We add to this landscape our results from new nanosized powder samples made by microwave-assisted combustion, with different dopants (Ca, Sr on Zn site and Al, Gd on Fe site). A detailed analysis of A1g, Eg, 3F2g Raman modes has been performed and Raman band parameters have been derived from bestfitting procedures and carefully compared to literature data. The vibrational results are discussed taking into account the characterization from X-ray powder diffraction raction, SEM-EDS probe, EPR spectroscopy and, of course, the magnetic responses.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11571/1216470
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact