Electrospinning is an interesting technique to produce polymer membranes made of entangled nanofibres. The technique is raising interest in pharmaceutical and biomedical areas. Either electrospun membranes are studied for tissue regeneration purposes, or incorporation of nanoparticles in electrospun membranes can be an opportunity to control the delivery of drug or to obtain dual drug delivery system. In this work suspensions of hydrochloride chitosan salt in copolymer polylactide-co-polycaprolactone (PLA-PCL) solution were electrospun in order to assess an advanced study for developing polymer nanofibre blend membrane loaded with chitosan polymer. The aim of the work was to investigate the properties and stability of chitosan/PLA-PCL electrospun membranes considering their application for tissue regeneration and drug delivery. The electrospun membranes were characterized for their physico-chemical (FT-IR) morphology (SEM) and in vitro biological properties (cytocompatibility and cells engraftment). Results show that homogeneous electrospun PLA-PCL/chitosan blend nanofibres in the range size 800 nm were obtained. Chitosan was loaded inside the nanofibres up to 27.2% (w/w) without modifying nanofibre shape, and only 6% of the loaded chitosan resulted to be on the nanofibre surface. The presence of chitosan in the nanofibres has shown to accelerate the electrospun membranes degradation in vitro.

Study on hydrophilicity and degradability of chitosan/polylactide-co-polycaprolactone nanofibre blend electrospun membrane

Dorati, R.;Pisani, S.;Conti, B.
;
Modena, T.;Chiesa, E.;Bruni, G.;Genta, I.
2018-01-01

Abstract

Electrospinning is an interesting technique to produce polymer membranes made of entangled nanofibres. The technique is raising interest in pharmaceutical and biomedical areas. Either electrospun membranes are studied for tissue regeneration purposes, or incorporation of nanoparticles in electrospun membranes can be an opportunity to control the delivery of drug or to obtain dual drug delivery system. In this work suspensions of hydrochloride chitosan salt in copolymer polylactide-co-polycaprolactone (PLA-PCL) solution were electrospun in order to assess an advanced study for developing polymer nanofibre blend membrane loaded with chitosan polymer. The aim of the work was to investigate the properties and stability of chitosan/PLA-PCL electrospun membranes considering their application for tissue regeneration and drug delivery. The electrospun membranes were characterized for their physico-chemical (FT-IR) morphology (SEM) and in vitro biological properties (cytocompatibility and cells engraftment). Results show that homogeneous electrospun PLA-PCL/chitosan blend nanofibres in the range size 800 nm were obtained. Chitosan was loaded inside the nanofibres up to 27.2% (w/w) without modifying nanofibre shape, and only 6% of the loaded chitosan resulted to be on the nanofibre surface. The presence of chitosan in the nanofibres has shown to accelerate the electrospun membranes degradation in vitro.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1223887
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 43
social impact