This paper deals with an initial and boundary value problem for a system coupling equation and boundary condition both of Cahn-Hilliard type; an additional convective term with a forced velocity field, which could act as a control on the system, is also present in the equation. Either regular or singular potentials are admitted in the bulk and on the boundary. Both the viscous and pure Cahn-Hilliard cases are investigated, and a number of results is proven about existence of solutions, uniqueness, regularity, continuous dependence, uniform boundedness of solutions, strict separation property. A complete approximation of the problem, based on the regularization of maximal monotone graphs and the use of a Faedo-Galerkin scheme, is introduced and rigorously discussed.
On a Cahn–Hilliard system with convection and dynamic boundary conditions
Colli, Pierluigi
;Gilardi, Gianni;
2018-01-01
Abstract
This paper deals with an initial and boundary value problem for a system coupling equation and boundary condition both of Cahn-Hilliard type; an additional convective term with a forced velocity field, which could act as a control on the system, is also present in the equation. Either regular or singular potentials are admitted in the bulk and on the boundary. Both the viscous and pure Cahn-Hilliard cases are investigated, and a number of results is proven about existence of solutions, uniqueness, regularity, continuous dependence, uniform boundedness of solutions, strict separation property. A complete approximation of the problem, based on the regularization of maximal monotone graphs and the use of a Faedo-Galerkin scheme, is introduced and rigorously discussed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.