A Skeleton-stabilized IsoGeometric Analysis (SIGA) technique is proposed for incompressible viscous flow problems with moderate Reynolds number. The proposed method allows utilizing identical finite dimensional spaces (with arbitrary B-splines/NURBS order and regularity) for the approximation of the pressure and velocity components. The key idea is to stabilize the jumps of high-order derivatives of variables over the skeleton of the mesh. For B-splines/NURBS basis functions of degree with -regularity ( ), only the derivative of order has to be controlled. This stabilization technique thus can be viewed as a high-regularity generalization of the (Continuous) Interior-Penalty Finite Element Method. Numerical experiments are performed for the Stokes and Navier–Stokes equations in two and three dimensions. Oscillation-free solutions and optimal convergence rates are obtained. In terms of the sparsity pattern of the algebraic system, we demonstrate that the block matrix associated with the stabilization term has a considerably smaller bandwidth when using B-splines than when using Lagrange basis functions, even in the case of C0-continuity. This important property makes the proposed isogeometric framework practical from a computational effort point of view.

Skeleton-stabilized IsoGeometric Analysis: High-regularity interior-penalty methods for incompressible viscous flow problems

Auricchio, Ferdinando;Reali, Alessandro
2018-01-01

Abstract

A Skeleton-stabilized IsoGeometric Analysis (SIGA) technique is proposed for incompressible viscous flow problems with moderate Reynolds number. The proposed method allows utilizing identical finite dimensional spaces (with arbitrary B-splines/NURBS order and regularity) for the approximation of the pressure and velocity components. The key idea is to stabilize the jumps of high-order derivatives of variables over the skeleton of the mesh. For B-splines/NURBS basis functions of degree with -regularity ( ), only the derivative of order has to be controlled. This stabilization technique thus can be viewed as a high-regularity generalization of the (Continuous) Interior-Penalty Finite Element Method. Numerical experiments are performed for the Stokes and Navier–Stokes equations in two and three dimensions. Oscillation-free solutions and optimal convergence rates are obtained. In terms of the sparsity pattern of the algebraic system, we demonstrate that the block matrix associated with the stabilization term has a considerably smaller bandwidth when using B-splines than when using Lagrange basis functions, even in the case of C0-continuity. This important property makes the proposed isogeometric framework practical from a computational effort point of view.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1224840
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact