Ultrasonography (US) is usually the first imaging modality chosen for the primary evaluation of the pancreas. The pancreatic gland can almost always be visualized by US. Even though there are well-known and sometimes over-emphasized limitations, the pancreatic gland can be adequately visualized by using correct US techniques, imaging and settings. Conventional US is a noninvasive and relatively low cost imaging method which is widely available and easy to perform. Tissue harmonic imaging (THI) and Doppler imaging are well known technologies that provide significant complementary information to the conventional method, playing an important role in the diagnosis and staging of pancreatic diseases. In recent decades, new interesting US methods have been developed focused on the evaluation of mechanical strain properties of tissues, such as elastography and sonoelasticity. Acoustic radiation force impulse (ARFI) imaging is a promising new US method that allows the evaluation of mechanical strain properties of deep tissues with the potential to characterize tissue without the need for external compression.
Ultrasound imaging
Calliada, Fabrizio
2012-01-01
Abstract
Ultrasonography (US) is usually the first imaging modality chosen for the primary evaluation of the pancreas. The pancreatic gland can almost always be visualized by US. Even though there are well-known and sometimes over-emphasized limitations, the pancreatic gland can be adequately visualized by using correct US techniques, imaging and settings. Conventional US is a noninvasive and relatively low cost imaging method which is widely available and easy to perform. Tissue harmonic imaging (THI) and Doppler imaging are well known technologies that provide significant complementary information to the conventional method, playing an important role in the diagnosis and staging of pancreatic diseases. In recent decades, new interesting US methods have been developed focused on the evaluation of mechanical strain properties of tissues, such as elastography and sonoelasticity. Acoustic radiation force impulse (ARFI) imaging is a promising new US method that allows the evaluation of mechanical strain properties of deep tissues with the potential to characterize tissue without the need for external compression.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.