We consider the Navier–Stokes equations in vorticity form in $R^2$ with a white noise forcing term of multiplicative type, whose spatial covariance is not regular enough to apply the Itô calculus in spaces, 1<<∞. We prove the existence of a unique strong (in the probability sense) solution.

Stochastic vorticity equation in R2 with not regular noise

Benedetta Ferrario;ZANELLA, MARGHERITA
2018-01-01

Abstract

We consider the Navier–Stokes equations in vorticity form in $R^2$ with a white noise forcing term of multiplicative type, whose spatial covariance is not regular enough to apply the Itô calculus in spaces, 1<<∞. We prove the existence of a unique strong (in the probability sense) solution.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1227066
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact