Obesity is a major threat to global health and metabolically associated with glycerol homeostasis. Here we demonstrate that in human adipocytes, the decreased pH observed during lipolysis (fat burning) correlates with increased glycerol release and stimulation of aquaglyceroporin AQP10. The crystal structure of human AQP10 determined at 2.3 Å resolution unveils the molecular basis for pH modulation-an exceptionally wide selectivity (ar/R) filter and a unique cytoplasmic gate. Structural and functional (in vitro and in vivo) analyses disclose a glycerol-specific pH-dependence and pinpoint pore-lining His80 as the pH-sensor. Molecular dynamics simulations indicate how gate opening is achieved. These findings unravel a unique type of aquaporin regulation important for controlling body fat mass. Thus, targeting the cytoplasmic gate to induce constitutive glycerol secretion may offer an attractive option for treating obesity and related complications.

Human adipose glycerol flux is regulated by a pH gate in AQP10

Laforenza, Umberto;
2018-01-01

Abstract

Obesity is a major threat to global health and metabolically associated with glycerol homeostasis. Here we demonstrate that in human adipocytes, the decreased pH observed during lipolysis (fat burning) correlates with increased glycerol release and stimulation of aquaglyceroporin AQP10. The crystal structure of human AQP10 determined at 2.3 Å resolution unveils the molecular basis for pH modulation-an exceptionally wide selectivity (ar/R) filter and a unique cytoplasmic gate. Structural and functional (in vitro and in vivo) analyses disclose a glycerol-specific pH-dependence and pinpoint pore-lining His80 as the pH-sensor. Molecular dynamics simulations indicate how gate opening is achieved. These findings unravel a unique type of aquaporin regulation important for controlling body fat mass. Thus, targeting the cytoplasmic gate to induce constitutive glycerol secretion may offer an attractive option for treating obesity and related complications.
2018
Cell & Developmental Biology contains resources in biochemistry, molecular biology, biophysics, physiology, and pharmacology that have a specific emphasis on cellular function in eukaryotic systems. Topics of particular importance include receptor biology and signal transduction, regulation of gene expression at the cellular level, developmental genetics, developmental biology and morphogenesis, and cell-environment interactions. Resources concentrated on molecular biochemistry and molecular regulation of gene expression, as well as microscopic or histological analysis of cell or tissue samples are excluded.
Esperti anonimi
Inglese
Internazionale
9
1
4749
11
12
info:eu-repo/semantics/article
262
Gotfryd, Kamil; Mósca, Andreia Filipa; Missel, Julie Winkel; Truelsen, Sigurd Friis; Wang, Kaituo; Spulber, Mariana; Krabbe, Simon; Hélix-Nielsen, Cla...espandi
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1232168
Citazioni
  • ???jsp.display-item.citation.pmc??? 48
  • Scopus 95
  • ???jsp.display-item.citation.isi??? 93
social impact