Persistent organic pollutants are a group of chemicals that include polychlorinated biphenyls (PCBs). PCBs exposure during adult life increases incidence and severity of cardiomyopathies, whereas in utero exposure determines congenital heart defects. Being fat-soluble, PCBs are passed to newborns through maternal milk, impairing heart functionality in the adult. It is still unknown how PCBs impair cardiac contraction at cellular/molecular levels. Here, we study the molecular mechanisms by which PCBs cause the observed heart contraction defects, analysing the alterations of Ca2+ toolkit components that regulate contraction. We investigated the effect that Aroclor 1254 (Aroclor), a mixture of PCBs, has on perinatal-like cardiomyocytes derived from mouse embryonic stem cells. Cardiomyocytes, exposed to 1 or 2 µg/ml Aroclor for 24 h, were analyzed for their kinematics contractile properties and intracellular Ca2+ dynamics. We observed that Aroclor impairs cardiomyocytes contractile properties by inhibiting spontaneous Ca2+ oscillations. It disrupts intracellular Ca2+ homeostasis by reducing the sarcoplasmic reticulum Ca2+ content and by inhibiting voltage-gated Ca2+ entry. These findings contribute to the understanding of the molecular underpinnings of PCBs-induced cardiovascular alterations, which are emerging as an additional life-threatening hurdle associated to PCBs pollution. Therefore, PCBs-dependent alteration of intracellular Ca2+ dynamics is the most likely trigger of developmental cardiac functional alteration.

Polychlorinated biphenyls reduce the kinematics contractile properties of embryonic stem cells-derived cardiomyocytes by disrupting their intracellular Ca2+ dynamics

Rebuzzini P;Zuccolo E;CIVELLO, CINZIA;Fassina L;Faris P;Zuccotti M;Moccia F;Garagna S
2018-01-01

Abstract

Persistent organic pollutants are a group of chemicals that include polychlorinated biphenyls (PCBs). PCBs exposure during adult life increases incidence and severity of cardiomyopathies, whereas in utero exposure determines congenital heart defects. Being fat-soluble, PCBs are passed to newborns through maternal milk, impairing heart functionality in the adult. It is still unknown how PCBs impair cardiac contraction at cellular/molecular levels. Here, we study the molecular mechanisms by which PCBs cause the observed heart contraction defects, analysing the alterations of Ca2+ toolkit components that regulate contraction. We investigated the effect that Aroclor 1254 (Aroclor), a mixture of PCBs, has on perinatal-like cardiomyocytes derived from mouse embryonic stem cells. Cardiomyocytes, exposed to 1 or 2 µg/ml Aroclor for 24 h, were analyzed for their kinematics contractile properties and intracellular Ca2+ dynamics. We observed that Aroclor impairs cardiomyocytes contractile properties by inhibiting spontaneous Ca2+ oscillations. It disrupts intracellular Ca2+ homeostasis by reducing the sarcoplasmic reticulum Ca2+ content and by inhibiting voltage-gated Ca2+ entry. These findings contribute to the understanding of the molecular underpinnings of PCBs-induced cardiovascular alterations, which are emerging as an additional life-threatening hurdle associated to PCBs pollution. Therefore, PCBs-dependent alteration of intracellular Ca2+ dynamics is the most likely trigger of developmental cardiac functional alteration.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1239066
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact