Over the last decades, the research and development of chip-scale photonics has made giant leaps forward, and has brought about exciting new physics and technological devices that now permeate our lives. Plasmonics is one such field, where light is manipulated at the nanoscale by exploiting the optical properties of metallic nanostructures. Surface plasmon polaritons (SPPs) are charge-density oscillations that propagate along the interface between a metal and a dielectric cladding. The SPP propagation constant depends on the dielectric functions of both the dielectric and metallic media, and thus it inherits the complex nature of these figures: in particular, its imaginary part entails attenuation along the direction of propagation. These intrinsic losses plague metallic systems and hinder the scope of SPP-based technology. To overcome this limitation, one can forgo metals and resort to dielectric media. For example, an infinite periodic multilayer behaves as a perfect mirror with unit reflectivity for all the frequencies and wave vectors inside its photonic band gap (PBG); however, a proper truncation of the multilayer periodicity may introduce photonic states inside the PBG: these modes living both below the light line of the external material and inside the PBG of a 1D photonic crystal are known as Bloch Surface Waves (BSWs). BSWs are particularly appealing due to their intense surface fields: most of the light in a BSW is trapped near the surface of the multilayer since light is confined by total internal reflection (TIR) on the dielectric side and by a PBG in the stacking direction: this allows for strongly peaked mode profiles, which is why BSWs have been considered as "dielectric plasmons". However, unlike SPPs, with proper design of the supporting multilayer both transverse-electric and transverse-magnetic polarized BSWs may exist. A thorough on-chip application of BSWs is still limited by a number of open questions. In the first place, the question whether BSWs actually have a strategic advantage in terms of field enhancement or modal volume with respect to simpler TIR-based solutions is surprisingly still unanswered; most researchers simply take this advantage for granted, but no proof has ever been published in the scientific literature. Another open question is how BSWs interact with a grating, a 1D refractive index modulation along the direction of propagation. This is important with a view to optimizing the coupling scheme, which until now has mostly been prism-based. Moreover, microring resonators based on BSWs are still being actively researched. The topic seems to be particularly fertile, as a couple of years ago an experimental demonstration of a BSW disk resonator was published; however, with a view to further reducing the modal volume of the BSW, resorting to a ring resonator seems inevitable. Features of BSW ring resonators have been studied theoretically, but a thorough experimental analysis of their behavior has not been carried out yet. Finally, a point that should be addressed is how full 3D confinement of BSWs could be achieved, as no photonic cavity has ever been demonstrated for BSWs. This PhD thesis represents my attempt to answer some of these open questions. I introduced a general optimization procedure that, given a set of refractive indices, allows one to understand a priori the minimum modal length and maximum surface electric field achievable with a BSW; I also analyzed the dispersion of guided modes supported by a 1D grating built on a 1D truncated periodic multilayer as a function of the geometrical parameters of the grating; I also reported our data on the first experimental demonstration of a porous silicon BSW ring resonator, which represents a collaboration with the Weiss group from Vanderbilt University in Tennessee. In the last chapter, I also reported a novel design strategy for BSW-based nanobeam cavities, whose validity has been confirmed by 2D FDTD simulations.
Negli ultimi decenni, la ricerca nell'ambito della fotonica integrata ha fatto grandi passi avanti, e ha portato sia a nuova fisica che ad apparecchiature tecnologiche che ora permeano le nostre vite. Nella plasmonica, in particolare, si manipola la luce su scale nanometriche sfruttando le proprietà ottiche di nanostrutture metalliche. I plasmoni di superficie (SPP) sono oscillazioni di densità di carica che si propagano lungo l'interfaccia tra un metallo ed un mezzo dielettrico e la cui costante di propagazione dipende dalla funzione dielettrica sia del metallo che del dielettrico, e dunque ne eredita la natura complessa: nel dettaglio, la parte immaginaria è legata all'attenuazione lungo la direzione di propagazione. Queste perdite intrinseche limitano l'utilizzo di tecnologie basate su SPP. Per superare queste limitazioni, si può ricorrere a mezzi dielettrici. Un multistrato periodico, ad esempio, si comporta come uno specchio perfetto, con riflettanza unitaria per tutte le frequenze e i vettori d'onda all'interno del suo bandgap fotonico (PBG); tuttavia, un adeguato troncamento della periodicità può introdurre stati fotonici all'interno del PBG: questi modi vivono sia sotto la linea di luce del mezzo esterno che dentro il PBG, e sono noti come onde di Bloch di superficie (BSW). I BSW sono attraenti per via dei loro intensi campi superficiali: la maggior parte della luce in un BSW è concentrata in prossimità della superficie del multistrato, essendo confinata per riflessione totale interna (TIR) dal lato dielettrico e da un PBG dal lato del multistrato: questo dà origine a profili di modo molto piccati, che hanno portato i BSW ad essere considerati alla stregua di "plasmoni dielettrici". Tuttavia, al contrario degli SPP, un adeguato design del multilayer sottostante permette l'esistenza di BSW polarizzati sia TE che TM. Un'applicazione on-chip efficace dei BSW si scontra però ancora con delle questioni aperte. In primo luogo, non è chiaro se i BSW offrano un vantaggio in termini di field enhancement o di volume modale rispetto a soluzioni più semplici basate su TIR: la maggior parte dei ricercatori dà per scontato che esista questo vantaggio, ma prima d'ora non è mai stato dimostrato. Un altro interrogativo è come un BSW interagisca con un grating, una modulazione monodimensionale dell'indice di rifrazione nella direzione di propagazione. Questo risulta importante nell'ottica di ottimizzare lo schema di accoppiamento, che ad oggi è perlopiù basato su prisma. Inoltre, si è ancora alla ricerca di risuonatori ad anello per BSW. Solo un paio di anni fa è stata pubblicata la prima dimostrazione sperimentale di un risuonatore a disco per BSW; tuttavia, nell'ottica di diminuire il volume modale del BSW, ricorrere a risuonatori ad anello sembra la strada maestra. Le caratteristiche dei risuonatori ad anelli per BSW sono state studiare teoricamente, ma un'analisi sperimentale completa delle loro performance non è ancora stata pubblicata. In ultimo, va affrontato il discorso del confinamento 3D dei BSW, dal momento che non sono mai state osservate cavità fotoniche per BSW. Questa tesi di dottorato rappresenta il mio tentativo di dare una risposta ad alcune di queste domande. Ho introdotto una procedura di ottimizzazione che, scelto un set di indici di rifrazione, fornisce a priori il volume modale minimo e il campo alla superficie massimo ottenibili con un BSW; ho anche analizzato la dispersione dei modi guidati supportati da un grating 1D costruito su un multistrato periodico troncato in funzione dei parametri geometrici del grating; ho anche riportato i nostri dati relativi alla prima dimostrazione sperimentale di un risuonatore ad anello in silicio poroso, frutto della collaborazione con il gruppo della prof.ssa Weiss della Vanderbilt University, in Tennessee. In conclusione, ho riportato la nostra strategia di design per una cavità nanobeam per BSW, confermandone la validità con simulazioni FDTD 2D.
Integrated Optics Based on Bloch Surface Waves
AURELIO, DANIELE
2019-01-11
Abstract
Over the last decades, the research and development of chip-scale photonics has made giant leaps forward, and has brought about exciting new physics and technological devices that now permeate our lives. Plasmonics is one such field, where light is manipulated at the nanoscale by exploiting the optical properties of metallic nanostructures. Surface plasmon polaritons (SPPs) are charge-density oscillations that propagate along the interface between a metal and a dielectric cladding. The SPP propagation constant depends on the dielectric functions of both the dielectric and metallic media, and thus it inherits the complex nature of these figures: in particular, its imaginary part entails attenuation along the direction of propagation. These intrinsic losses plague metallic systems and hinder the scope of SPP-based technology. To overcome this limitation, one can forgo metals and resort to dielectric media. For example, an infinite periodic multilayer behaves as a perfect mirror with unit reflectivity for all the frequencies and wave vectors inside its photonic band gap (PBG); however, a proper truncation of the multilayer periodicity may introduce photonic states inside the PBG: these modes living both below the light line of the external material and inside the PBG of a 1D photonic crystal are known as Bloch Surface Waves (BSWs). BSWs are particularly appealing due to their intense surface fields: most of the light in a BSW is trapped near the surface of the multilayer since light is confined by total internal reflection (TIR) on the dielectric side and by a PBG in the stacking direction: this allows for strongly peaked mode profiles, which is why BSWs have been considered as "dielectric plasmons". However, unlike SPPs, with proper design of the supporting multilayer both transverse-electric and transverse-magnetic polarized BSWs may exist. A thorough on-chip application of BSWs is still limited by a number of open questions. In the first place, the question whether BSWs actually have a strategic advantage in terms of field enhancement or modal volume with respect to simpler TIR-based solutions is surprisingly still unanswered; most researchers simply take this advantage for granted, but no proof has ever been published in the scientific literature. Another open question is how BSWs interact with a grating, a 1D refractive index modulation along the direction of propagation. This is important with a view to optimizing the coupling scheme, which until now has mostly been prism-based. Moreover, microring resonators based on BSWs are still being actively researched. The topic seems to be particularly fertile, as a couple of years ago an experimental demonstration of a BSW disk resonator was published; however, with a view to further reducing the modal volume of the BSW, resorting to a ring resonator seems inevitable. Features of BSW ring resonators have been studied theoretically, but a thorough experimental analysis of their behavior has not been carried out yet. Finally, a point that should be addressed is how full 3D confinement of BSWs could be achieved, as no photonic cavity has ever been demonstrated for BSWs. This PhD thesis represents my attempt to answer some of these open questions. I introduced a general optimization procedure that, given a set of refractive indices, allows one to understand a priori the minimum modal length and maximum surface electric field achievable with a BSW; I also analyzed the dispersion of guided modes supported by a 1D grating built on a 1D truncated periodic multilayer as a function of the geometrical parameters of the grating; I also reported our data on the first experimental demonstration of a porous silicon BSW ring resonator, which represents a collaboration with the Weiss group from Vanderbilt University in Tennessee. In the last chapter, I also reported a novel design strategy for BSW-based nanobeam cavities, whose validity has been confirmed by 2D FDTD simulations.File | Dimensione | Formato | |
---|---|---|---|
Aurelio_PhD_Thesis.pdf
accesso aperto
Descrizione: tesi di dottorato
Dimensione
5.68 MB
Formato
Adobe PDF
|
5.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.