This work aims at designing a drug delivery system for rifampicin (RIF) to be used for the therapy of infections from mycobacterium tuberculosis or other lung-colonizing bacteria. We are proposing, in particular, the delivery of RIF by micelles based on inulin functionalized with vitamin E (INVITE). We previously demonstrated that INVITE micelles are formed from the self-assembling sustained by the interaction, within the hydrophobic core, of aromatic groups belonging to vitamin E. It points on the effectiveness of these biocompatible systems in incorporating aromatic-group-bearing hydrophobic drug such as RIF. The succinilated derivative of INVITE, namely INVITESA, was further studied. Other than a full physicochemical characterization, the obtained micelles containing RIF were tested for their antibacterial activity against Gram- or Gram+bacteria including mycobacterium smegmatis. Furthermore, uptake studies on human alveolar macrophages and MTT studies were performed.

Drug delivery of rifampicin by natural micelles based on inulin: physicochemical properties, antibacterial activity and human macrophages uptake

Tripodo G;Perteghella S;Grisoli P;Torre ML;
2019-01-01

Abstract

This work aims at designing a drug delivery system for rifampicin (RIF) to be used for the therapy of infections from mycobacterium tuberculosis or other lung-colonizing bacteria. We are proposing, in particular, the delivery of RIF by micelles based on inulin functionalized with vitamin E (INVITE). We previously demonstrated that INVITE micelles are formed from the self-assembling sustained by the interaction, within the hydrophobic core, of aromatic groups belonging to vitamin E. It points on the effectiveness of these biocompatible systems in incorporating aromatic-group-bearing hydrophobic drug such as RIF. The succinilated derivative of INVITE, namely INVITESA, was further studied. Other than a full physicochemical characterization, the obtained micelles containing RIF were tested for their antibacterial activity against Gram- or Gram+bacteria including mycobacterium smegmatis. Furthermore, uptake studies on human alveolar macrophages and MTT studies were performed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1244226
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 34
social impact