Recent seismic events have provoked an increasing interest in understanding as well as predicting the risk associated with future earthquakes. An initial step in any reliable definition of the seismic vulnerability of a region is understanding properly the structural behaviour of its building stock. While the state of knowledge regarding the behaviour of unreinforced masonry (URM) building typologies commonly encountered in historically seismic prone regions is comparatively advanced; there exists large URM building stocks in several parts of the world composed of structural typologies whose earthquake response is virtually unknown. With increasing cases of induced seismicity, a proper understanding of the seismic behaviour of such structural typologies (also often designed with no particular consideration for lateral loads) has become of paramount importance and can be reliably achieved only by large scale experimental campaigns. In this context, the first part of this dissertation constitutes of multi-scale experimental activities: ranging from characterisation tests to dynamic tests on full scale components and buildings. In particular, incremental dynamic tests were performed on: single leaf and cavity walls in the out-of-plane (OOP) direction, a full scale two-storey cavity wall house and also a one-storey roof sub-structure of the tested house. Such experiments allowed the study of their structural response at both local as well as global scales and at various levels of intensity. In the second part of this dissertation, light computational models capable of capturing the dynamic OOP response of walls, roof substructures, chimneys and parapets were developed. These models were calibrated with the performed dynamic experiments as well as other experimental tests in literature. Innovative aspects of these models include the focus placed on developing and testing various damping models to capture the energy dissipation involved in their rocking response. In the third and final part of the dissertation, emphasis was placed on the potential risk associated with the development of local mechanisms in walls and non-structural components. The numerical models developed in the second part were implemented to evaluate the seismic vulnerability associated with non-structural components especially in an induced seismic activity scenario. Fragility curves are then provided considering different building and non-structural component configurations, including their initial state to be undamaged or already damaged. Guidelines are also provided on the choice of appropriate intensity measures as well as engineering demand parameters to be used. This dissertation in its entirety attempts to take a significant step forward in the development of robust yet light computational models having few but sufficient degree of freedoms capable of assessing simultaneously the performance of URM structures both globally and locally.
I recenti eventi sismici hanno generato un crescente interesse verso una migliore comprensione e previsione del rischio associato ad eventi futuri. Un primo passo per un’adeguata determinazione della vulnerabilità sismica di una regione è la conoscenza della risposta strutturale degli edifici che lo compongono. Se da un lato le conoscenze legate alla risposta strutturale di edifici in regioni storicamente soggette ad attività sismica sono piuttosto avanzate, ci sono un gran numero di edifici in diverse regioni del mondo di cui non si hanno sufficienti informazioni rispetto al loro comportamento strutturale dinamico. I crescenti casi di sismicità indotta, infatti, hanno richiesto un’adeguata conoscenza di un numero più ampio di tipologie strutturali. Questo può essere ottenuto solo attraverso importanti campagne di sperimentazione in situ e in laboratorio. In tale contesto parte del lavoro svolto nell’ambito di questa tesi di dottorato è rappresentato da diverse tipologie di attività sperimentali su edifici olandesi: da test per la caratterizzazione dei materiali a test dinamici su pannelli murari ed edifici interi. In particolare sono stati effettuati test dinamici su tavola vibrante su pannelli murari semplici e cavity walls soggetti ad azioni fuori dal piano e su due edifici interi aventi uno e due piani ed in scala al vero. Queste attività sperimentali hanno consentito la caratterizzazione del loro comportamento sismico a scala globale e locale ed a vari livelli di intensità sismica. Nella seconda parte del lavoro di tesi sono stati sviluppati dei modelli semplificati per l’analisi della risposta fuori piano di pareti murarie e di elementi secondari come tetti, parapetti e camini. I modelli sono stati calibrati sulla base di diverse risposte sperimentali. Particolare attenzione è stata prestata allo studio e alla calibrazione di diversi modelli di smorzamento in grado di simulare efficacemente il comportamento di rocking. La terza parte del lavoro di tesi ha riguardato l’utilizzo di questi modelli per la determinazione della vulnerabilità sismica di questi elementi secondari soggetti a sismicità indotta. Il lavoro ha previsto la derivazione di curve di fragilità considerando diverse configurazioni di edifici e fornendo indicazioni sulle migliori misure di intensità da adottare.
STRATEGIE E STRUMENTI PER LA VALUTAZIONE DELLA VULNERABILITA' SISMICA GLOBALE E LOCALE DI STRUTTURE IN MURATURA NON ARMATA
TOMASSETTI, UMBERTO
2019-02-11
Abstract
Recent seismic events have provoked an increasing interest in understanding as well as predicting the risk associated with future earthquakes. An initial step in any reliable definition of the seismic vulnerability of a region is understanding properly the structural behaviour of its building stock. While the state of knowledge regarding the behaviour of unreinforced masonry (URM) building typologies commonly encountered in historically seismic prone regions is comparatively advanced; there exists large URM building stocks in several parts of the world composed of structural typologies whose earthquake response is virtually unknown. With increasing cases of induced seismicity, a proper understanding of the seismic behaviour of such structural typologies (also often designed with no particular consideration for lateral loads) has become of paramount importance and can be reliably achieved only by large scale experimental campaigns. In this context, the first part of this dissertation constitutes of multi-scale experimental activities: ranging from characterisation tests to dynamic tests on full scale components and buildings. In particular, incremental dynamic tests were performed on: single leaf and cavity walls in the out-of-plane (OOP) direction, a full scale two-storey cavity wall house and also a one-storey roof sub-structure of the tested house. Such experiments allowed the study of their structural response at both local as well as global scales and at various levels of intensity. In the second part of this dissertation, light computational models capable of capturing the dynamic OOP response of walls, roof substructures, chimneys and parapets were developed. These models were calibrated with the performed dynamic experiments as well as other experimental tests in literature. Innovative aspects of these models include the focus placed on developing and testing various damping models to capture the energy dissipation involved in their rocking response. In the third and final part of the dissertation, emphasis was placed on the potential risk associated with the development of local mechanisms in walls and non-structural components. The numerical models developed in the second part were implemented to evaluate the seismic vulnerability associated with non-structural components especially in an induced seismic activity scenario. Fragility curves are then provided considering different building and non-structural component configurations, including their initial state to be undamaged or already damaged. Guidelines are also provided on the choice of appropriate intensity measures as well as engineering demand parameters to be used. This dissertation in its entirety attempts to take a significant step forward in the development of robust yet light computational models having few but sufficient degree of freedoms capable of assessing simultaneously the performance of URM structures both globally and locally.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_UT_compressed.pdf
accesso aperto
Descrizione: tesi di dottorato
Dimensione
11.48 MB
Formato
Adobe PDF
|
11.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.