We introduce a new condition on elliptic operators $ L = \triangle + b \cdot \nabla $, which ensures the validity of the Liouville property, i.e., all smooth bounded solutions to $Lu = 0$ on $R^d$ are constant. Such condition is sharp when $d = 1.$ We extend our Liouville theorem to more general second order operators in non-divergence form assuming a Cordes type condition.

A sharp Liouville theorem for elliptic operators

PRIOLA, Enrico;
2010-01-01

Abstract

We introduce a new condition on elliptic operators $ L = \triangle + b \cdot \nabla $, which ensures the validity of the Liouville property, i.e., all smooth bounded solutions to $Lu = 0$ on $R^d$ are constant. Such condition is sharp when $d = 1.$ We extend our Liouville theorem to more general second order operators in non-divergence form assuming a Cordes type condition.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1251232
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact