We consider a class of semilinear stochastic evolution equations driven by an additive cylindrical stable noise. We investigate structural properties of the solutions like Markov, irreducibility, stochastic continuity, Feller and strong Feller properties, and study integrability of trajectories. The obtained results are applied to semilinear stochastic heat equations with Dirichlet boundary conditions and bounded and Lipschitz nonlinearities.
Structural properties of semilinear SPDEs driven by cylindrical stable processes
E. Priola;
2011-01-01
Abstract
We consider a class of semilinear stochastic evolution equations driven by an additive cylindrical stable noise. We investigate structural properties of the solutions like Markov, irreducibility, stochastic continuity, Feller and strong Feller properties, and study integrability of trajectories. The obtained results are applied to semilinear stochastic heat equations with Dirichlet boundary conditions and bounded and Lipschitz nonlinearities.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.