We consider the Navier–Stokes equation on the 2D torus, with a stochastic forcing term which is a cylindrical fractional Wiener noise of Hurst parameter H . Following Albeverio and Ferrario (Ann Probab 32(2):1632–1649, 2004) and Da Prato and Debussche (J Funct Anal 196(1):180–210, 2002) which dealt with the case H = 1/2 , we prove a local existence and uniqueness result when 7/16< H < 1/2 and a global existence and uniqueness result when 1/2 < H < 1.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | 2D Navier–Stokes equation with cylindrical fractional Brownian noise |
Autori: | |
Data di pubblicazione: | 2019 |
Rivista: | |
Abstract: | We consider the Navier–Stokes equation on the 2D torus, with a stochastic forcing term which is a cylindrical fractional Wiener noise of Hurst parameter H . Following Albeverio and Ferrario (Ann Probab 32(2):1632–1649, 2004) and Da Prato and Debussche (J Funct Anal 196(1):180–210, 2002) which dealt with the case H = 1/2 , we prove a local existence and uniqueness result when 7/16< H < 1/2 and a global existence and uniqueness result when 1/2 < H < 1. |
Handle: | http://hdl.handle.net/11571/1268867 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.