Let S be a minimal complex surface of general type and of maximal Albanese dimension; by the Severi inequality one has KS2 ≥ 4χ(OS). We prove that the equality KS2 = 4χ(OS) holds if and only if q(S) := h1(OS) = 2 and the canonical model of S is a double cover of the Albanese surface branched on an ample divisor with at most negligible singularities.

Surfaces on the Severi line

PARDINI, RITA;Stoppino Lidia
2016-01-01

Abstract

Let S be a minimal complex surface of general type and of maximal Albanese dimension; by the Severi inequality one has KS2 ≥ 4χ(OS). We prove that the equality KS2 = 4χ(OS) holds if and only if q(S) := h1(OS) = 2 and the canonical model of S is a double cover of the Albanese surface branched on an ample divisor with at most negligible singularities.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1277146
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact