This paper focuses on the role of a government of a large population of interacting agents as a meanfield optimal control problem derived from deterministic finite agent dynamics. The control problems are constrained by a Partial Differential Equation of continuity-type without diffusion, governing the dynamics of the probability distribution of the agent population. We derive existence of optimal controls in a measure-theoretical setting as natural limits of finite agent optimal controls without any assumption on the regularity of control competitors. In particular, we prove the consistency of mean-field optimal controls with corresponding underlying finite agent ones. The results follow from a Γ -convergence argument constructed over the mean-field limit, which stems from leveraging the superposition principle.

Mean-field optimal control as Gamma-limit of finite agent controls

FORNASIER, MASSIMO;Lisini S.;ORRIERI, CARLO;Savare G.
2019-01-01

Abstract

This paper focuses on the role of a government of a large population of interacting agents as a meanfield optimal control problem derived from deterministic finite agent dynamics. The control problems are constrained by a Partial Differential Equation of continuity-type without diffusion, governing the dynamics of the probability distribution of the agent population. We derive existence of optimal controls in a measure-theoretical setting as natural limits of finite agent optimal controls without any assumption on the regularity of control competitors. In particular, we prove the consistency of mean-field optimal controls with corresponding underlying finite agent ones. The results follow from a Γ -convergence argument constructed over the mean-field limit, which stems from leveraging the superposition principle.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1287009
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 39
social impact