Physical activity is emerging as an alternative nonpharmaceutical strategy to prevent and treat a variety of cardiovascular diseases due to its cardiac and skeletal muscle beneficial effects. Oxidative stress occurs in skeletal muscle of chronic heart failure (CHF) patients with possible impact on muscle function decline. We determined the effect of voluntary-free wheel running (VFWR) in preventing protein damage in Tgαq*44 transgenic mice (Tg) characterized by a delayed CHF progression. In the early (6 months) and transition (12 months) phase of CHF, VFWR increased the daily mean distance covered by Tg mice eliminating the difference between Tg and WT present before exercise at 12 months of age (WT Pre-EX 3.62 ± 1.66 vs. Tg Pre-EX 1.51 ± 1.09 km, P < 0.005; WT Post-EX 5.72 ± 3.42 vs. Tg Post-EX 4.17 ± 1.8 km, P > 0.005). This effect was concomitant with an improvement of in vivo cardiac performance [(Cardiac Index (mL/min/cm2 ): 6 months, untrained-Tg 0.167 ± 0.005 vs. trained-Tg 0.21 ± 0.003, P < 0.005; 12 months, untrained-Tg 0.1 ± 0.009 vs. trained-Tg 0.133 ± 0.005, P < 0.005]. Such effects were associated with a skeletal muscle antioxidant response effective in preventing oxidative damage induced by CHF at the transition phase (untrained-Tg 0.438 ± 0.25 vs. trained-Tg 0.114 ± 0.010, P < 0.05) and with an increased expression of protein control markers (MuRF-1, untrained-Tg 1.12 ± 0.29 vs. trained-Tg 14.14 ± 3.04, P < 0.0001; Atrogin-1, untrained-Tg 0.9 ± 0.38 vs. trained-Tg 7.79 ± 2.03, P < 0.01; Cathepsin L, untrained-Tg 0.91 ± 0.27 vs. trained-Tg 2.14 ± 0.55, P < 0.01). At the end-stage of CHF (14 months), trained-Tg mice showed a worsening of physical performance (decrease in daily activity and weekly distance and time of activity) compared to trained age-matched WT in association with oxidative protein damage of a similar level to that of untrained-Tg mice (untrained-Tg 0.62 ± 0.24 vs. trained-Tg 0.64 ± 0.13, P > 0.05). Prolonged voluntary physical activity performed before the onset of CHF end-stage, appears to be a useful tool to increase cardiac function and to reduce skeletal muscle oxidative damage counteracting physical activity decline.

Voluntary physical activity counteracts Chronic Heart Failure progression affecting both cardiac function and skeletal muscle in the transgenic Tgαq*44 mouse model

BARDI, ELEONORA;Bottinelli R.;Pellegrino M. A.
2019-01-01

Abstract

Physical activity is emerging as an alternative nonpharmaceutical strategy to prevent and treat a variety of cardiovascular diseases due to its cardiac and skeletal muscle beneficial effects. Oxidative stress occurs in skeletal muscle of chronic heart failure (CHF) patients with possible impact on muscle function decline. We determined the effect of voluntary-free wheel running (VFWR) in preventing protein damage in Tgαq*44 transgenic mice (Tg) characterized by a delayed CHF progression. In the early (6 months) and transition (12 months) phase of CHF, VFWR increased the daily mean distance covered by Tg mice eliminating the difference between Tg and WT present before exercise at 12 months of age (WT Pre-EX 3.62 ± 1.66 vs. Tg Pre-EX 1.51 ± 1.09 km, P < 0.005; WT Post-EX 5.72 ± 3.42 vs. Tg Post-EX 4.17 ± 1.8 km, P > 0.005). This effect was concomitant with an improvement of in vivo cardiac performance [(Cardiac Index (mL/min/cm2 ): 6 months, untrained-Tg 0.167 ± 0.005 vs. trained-Tg 0.21 ± 0.003, P < 0.005; 12 months, untrained-Tg 0.1 ± 0.009 vs. trained-Tg 0.133 ± 0.005, P < 0.005]. Such effects were associated with a skeletal muscle antioxidant response effective in preventing oxidative damage induced by CHF at the transition phase (untrained-Tg 0.438 ± 0.25 vs. trained-Tg 0.114 ± 0.010, P < 0.05) and with an increased expression of protein control markers (MuRF-1, untrained-Tg 1.12 ± 0.29 vs. trained-Tg 14.14 ± 3.04, P < 0.0001; Atrogin-1, untrained-Tg 0.9 ± 0.38 vs. trained-Tg 7.79 ± 2.03, P < 0.01; Cathepsin L, untrained-Tg 0.91 ± 0.27 vs. trained-Tg 2.14 ± 0.55, P < 0.01). At the end-stage of CHF (14 months), trained-Tg mice showed a worsening of physical performance (decrease in daily activity and weekly distance and time of activity) compared to trained age-matched WT in association with oxidative protein damage of a similar level to that of untrained-Tg mice (untrained-Tg 0.62 ± 0.24 vs. trained-Tg 0.64 ± 0.13, P > 0.05). Prolonged voluntary physical activity performed before the onset of CHF end-stage, appears to be a useful tool to increase cardiac function and to reduce skeletal muscle oxidative damage counteracting physical activity decline.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1287987
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact